RESUMO
Academic and industrial research on nanofibres is an area of increasing global interest, as seen in the continuously multiplying number of research papers and patents and the broadening range of chemical, medical, electrical and environmental applications. This in turn expands the size of the market opportunity and is reflected in the significant rise of entrepreneurial activities and investments in the field. Electrospinning is probably the most researched top-down method to form nanofibres from a remarkable range of organic and inorganic materials. It is well known and discussed in many comprehensive studies, so why this review? As we read about yet another "novel" method producing multifunctional nanomaterials in grams or milligrams in the laboratory, there is hardly any research addressing how these methods can be safely, consistently and cost-effectively up-scaled. Despite two decades of governmental and private investment, the productivity of nanofibre forming methods is still struggling to meet the increasing demand. This hinders the further integration of nanofibres into practical large-scale applications and limits current uses to niche-markets. Looking into history, this large gap between supply and demand of synthetic fibres was seen and addressed in conventional textile production a century ago. The remarkable achievement was accomplished via extensive collaborative research between academia and industry, applying ingenious solutions and technological convergence from polymer chemistry, physical chemistry, materials science and engineering disciplines. Looking into the present, current advances in electrospinning and nanofibre production are showing similar interdisciplinary technological convergence, and knowledge of industrial textile processing is being combined with new developments in nanofibre forming methods. Moreover, many important parameters in electrospinning and nanofibre spinning methods overlap parameters extensively studied in industrial fibre processing. Thus, this review combines interdisciplinary knowledge from the academia and industry to facilitate technological convergence and offers insight for upscaling electrospinning and nanofibre production. It will examine advances in electrospinning within a framework of large-scale fibre production as well as alternative nanofibre forming methods, providing a comprehensive comparison of conventional and contemporary fibre forming technologies. This study intends to stimulate interest in addressing the issue of scale-up alongside novel developments and applications in nanofibre research.
Assuntos
Equipamentos e Provisões Elétricas , Nanofibras/química , Nanotecnologia/instrumentação , Desenho de Equipamento , História do Século XX , Nanofibras/ultraestrutura , Nanotecnologia/métodos , Têxteis/históriaRESUMO
Extracts of the Quillaja saponaria tree contain natural surfactant molecules called saponins that very efficiently stabilize foams and emulsions. Therefore, such extracts are widely used in several technologies. In addition, saponins have demonstrated nontrivial bioactivity and are currently used as essential ingredients in vaccines, food supplements, and other health products. Previous preliminary studies showed that saponins have some peculiar surface properties, such as a very high surface modulus, that may have an important impact on the mechanisms of foam and emulsion stabilization. Here we present a detailed characterization of the main surface properties of highly purified aqueous extracts of Quillaja saponins. Surface tension isotherms showed that the purified Quillaja saponins behave as nonionic surfactants with a relatively high cmc (0.025 wt %). The saponin adsorption isotherm is described well by the Volmer equation, with an area per molecule of close to 1 nm(2). By comparing this area to the molecular dimensions, we deduce that the hydrophobic triterpenoid rings of the saponin molecules lie parallel to the air-water interface, with the hydrophilic glucoside tails protruding into the aqueous phase. Upon small deformation, the saponin adsorption layers exhibit a very high surface dilatational elasticity (280 ± 30 mN/m), a much lower shear elasticity (26 ± 15 mN/m), and a negligible true dilatational surface viscosity. The measured dilatational elasticity is in very good agreement with the theoretical predictions of the Volmer adsorption model (260 mN/m). The measured characteristic adsorption time of the saponin molecules is 4 to 5 orders of magnitude longer than that predicted theoretically for diffusion-controlled adsorption, which means that the saponin adsorption is barrier-controlled around and above the cmc. The perturbed saponin layers relax toward equilibrium in a complex manner, with several relaxation times, the longest of them being around 3 min. Molecular interpretations of the observed trends are proposed when possible. Surprisingly, in the course of our study we found experimentally that the drop shape analysis method (DSA method) shows a systematically lower surface elasticity, in comparison with the other two methods used: Langmuir trough and capillary pressure tensiometry with spherical drops. The possible reasons for the observed discrepancy are discussed, and the final conclusion is that the DSA method has specific problems and may give incorrect results when applied to study the dynamic properties of systems with high surface elasticity, such as adsorption layers of saponins, lipids, fatty acids, solid particles, and some proteins. The last conclusion is particularly important because the DSA method recently became the preferred method for the characterization of fluid interfaces because of its convenience.