Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
J Med Chem ; 67(10): 8172-8185, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38695666

RESUMO

Several novel and effective cysteine targeting (Cys) covalent drugs are in clinical use. However, the target area containing a druggable Cys residue is limited. Therefore, methods for creating covalent drugs that target different residues are being looked for; examples of such ligands include those that target the residues lysine (Lys) and tyrosine (Tyr). Though the histidine (His) side chain is more frequently found in protein binding locations and has higher desirable nucleophilicity, surprisingly limited research has been done to specifically target this residue, and there are not many examples of His-targeting ligands that have been rationally designed. In the current work, we created novel stapled peptides that are intended to target hMcl-1 His 252 covalently. We describe the in vitro (biochemical, NMR, and X-ray) and cellular design and characterization of such agents. Our findings further suggest that the use of electrophiles to specifically target His residues is warranted.


Assuntos
Histidina , Peptídeos , Histidina/química , Humanos , Peptídeos/química , Peptídeos/farmacologia , Conformação Proteica em alfa-Hélice , Cristalografia por Raios X , Modelos Moleculares , Desenho de Fármacos , Ligantes
2.
J Med Chem ; 66(14): 10108-10118, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37464766

RESUMO

We report on an innovative ligand discovery strategy based on protein NMR-based screening of a combinatorial library of ∼125,000 compounds that was arranged in 96 distinct mixtures. Using sensitive solution protein NMR spectroscopy and chemical perturbation-based screening followed by an iterative synthesis, deconvolutions, and optimization strategy, we demonstrate that the approach could be useful in the identification of initial binding molecules for difficult drug targets, such as those involved in protein-protein interactions. As an application, we will report novel agents targeting the Bcl-2 family protein hMcl-1. The approach is of general applicability and could be deployed as an effective screening strategy for de novo identification of ligands, particularly when tackling targets involved in protein-protein interactions.


Assuntos
Técnicas de Química Combinatória , Proteínas , Técnicas de Química Combinatória/métodos , Proteínas/química , Espectroscopia de Ressonância Magnética/métodos , Imageamento por Ressonância Magnética , Ligantes , Ligação Proteica
3.
J Med Chem ; 66(12): 8159-8169, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37262387

RESUMO

We have recently reported on the use of aryl-fluorosulfates in designing water- and plasma-stable agents that covalently target Lys, Tyr, or His residues in the BIR3 domain of the inhibitor of the apoptosis protein (IAP) family. Here, we report further structural, cellular, and pharmacological characterizations of this agent, including the high-resolution structure of the complex between the Lys-covalent agent and its target, the BIR3 domain of X-linked IAP (XIAP). We also compared the cellular efficacy of the agent in two-dimensional (2D) and three-dimensional (3D) cell cultures, side by side with the clinical candidate reversible IAP inhibitor LCL161. Finally, in vivo pharmacokinetic studies indicated that the agent was long-lived and orally bioavailable. Collectively our data further corroborate that aryl-fluorosulfates, when incorporated correctly in a ligand, can result in Lys-covalent agents with pharmacodynamic and pharmacokinetic properties that warrant their use in the design of pharmacological probes or even therapeutics.


Assuntos
Proteínas Inibidoras de Apoptose , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X , Ligação Proteica , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Apoptose
4.
J Med Chem ; 65(22): 15443-15456, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36331527

RESUMO

Overexpression of the receptor tyrosine kinase EphA2 is invariably associated with poor prognosis and development of aggressive metastatic cancers. Guided by our recently solved X-ray structure of the complex between an agonistic peptide and EphA2-LBD, we report on a novel agent, targefrin, that binds to EphA2-LBD with a 21 nM dissociation constant by isothermal titration calorimetry and presents an IC50 value of 10.8 nM in a biochemical assay. In cell-based assays, a dimeric version of the agent is as effective as the natural dimeric ligands (ephrinA1-Fc) in inducing cellular receptor internalization and degradation in several pancreatic cancer cell lines. When conjugated with chemotherapy, the agents can effectively deliver paclitaxel to pancreatic cancers in a mouse xenograft study. Given the pivotal role of EphA2 in tumor progression, we are confident that the agents reported could be further developed into innovative EphA2-targeting therapeutics.


Assuntos
Peptídeos , Receptor EphA2 , Animais , Humanos , Camundongos , Linhagem Celular , Ligantes , Peptídeos/farmacologia , Receptores Proteína Tirosina Quinases , Receptor EphA2/efeitos dos fármacos , Receptor EphA2/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia
5.
iScience ; 25(9): 104877, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36034213

RESUMO

Amyotrophic lateral sclerosis (ALS) is a degenerative disease that progressively destroys motor neurons (MNs). Earlier studies identified EphA4, a receptor tyrosine kinase, as a possible disease-modifying gene. The complex interplay between the EphA4 receptor and its ephrin ligands in motor neurons and astrocytes has not yet been fully elucidated and includes a putative pro-apoptotic activity of the unbound receptor compared to ephrin-bound receptor. We recently reported that astrocytes from patients with ALS induce cell death in co-cultured MNs. Here we found that first-generation synthetic EphA4 agonistic agent 123C4, effectively protected MNs when co-cultured with reactive astrocytes from patients with ALS from multiple subgroups (sALS and mutant SOD1). Newer generation and more potent EphA4 agonistic agents 150D4, 150E8, and 150E7 provided effective protection at a lower therapeutic dose. Combined, the data suggest that the development of EphA4 agonistic agents provides potentially a promising therapeutic strategy for patients with ALS.

6.
J Med Chem ; 64(21): 16147-16158, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34705456

RESUMO

We have recently reported on Lys-covalent agents that, based on aryl-sulfonyl fluorides, were designed to target binding site Lys 311 in the X-linked inhibitor of apoptosis protein (XIAP). Similar to XIAP, melanoma-IAP (ML-IAP), a less well-characterized IAP family protein, also presents a lysine residue (Lys 135), which is in a position equivalent to that of Lys 311 of XIAP. On the contrary, two other members of the IAP family, namely, cellular-IAPs (cIAP1 and cIAP2), present a glutamic acid residue in that position. Hence, in the present work, we describe the derivation and characterization of the very first potent ML-IAP Lys-covalent inhibitor with cellular activity. The agent can be used as a pharmacological tool to further validate ML-IAP as a drug target and eventually for the development of ML-IAP-targeted therapeutics.


Assuntos
Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Lisina/química , Melanoma/patologia , Linhagem Celular Tumoral , Humanos , Proteínas Inibidoras de Apoptose/química
7.
Molecules ; 26(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204178

RESUMO

We recently reported on a potent synthetic agent, 135H11, that selectively targets the receptor tyrosine kinase, EphA2. While 135H11 possesses a relatively high binding affinity for the ligand-binding domain of EphA2 (Kd~130 nM), receptor activation in the cell required the synthesis of dimeric versions of such agent (namely 135H12). This was expected given that the natural ephrin ligands also need to be dimerized or clustered to elicit agonistic activity in cell. In the present report we investigated whether the agonistic activity of 135H11 could be enhanced by biotin conjugation followed by complex formation with streptavidin. Therefore, we measured the agonistic EphA2 activity of 135H11-biotin (147B5) at various agent/streptavidin ratios, side by side with 135H12, and a scrambled version of 147B5 in pancreatic- and breast-cancer cell lines. The (147B5)n-streptavidin complexes (when n = 2, 3, 4, but not when n = 1) induced a strong receptor degradation effect in both cell lines compared to 135H12 or the (scrambled-147B5)4-streptavidin complex as a control, indicating that multimerization of the targeting agent resulted in an increased ability to cause receptor clustering and internalization. Subsequently, we prepared an Alexa-Fluor-streptavidin conjugate to demonstrate that (147B5)4-AF-streptavidin, but not the scrambled equivalent complex, concentrates in pancreatic and breast cancers in orthotopic nude-mouse models. Hence, we conclude that these novel targeting agents, with proper derivatization with imaging reagents or chemotherapy, can be used as diagnostics, and/or to deliver chemotherapy selectively to EphA2-expressing tumors.


Assuntos
Receptor EphA2/agonistas , Receptor EphA2/química , Animais , Sítios de Ligação/fisiologia , Biotina/química , Biotina/metabolismo , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Ligantes , Camundongos , Neoplasias Pancreáticas/metabolismo , Ligação Proteica/fisiologia , Receptor EphA2/metabolismo , Estreptavidina/química , Estreptavidina/metabolismo
8.
J Med Chem ; 64(15): 11229-11246, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34293864

RESUMO

In this paper, we applied an innovative nuclear magnetic resonance (NMR)-guided screening and ligand design approach, named focused high-throughput screening by NMR (fHTS by NMR), to derive potent, low-molecular-weight ligands capable of mimicking interactions elicited by ephrin ligands on the receptor tyrosine kinase EphA4. The agents bind with nanomolar affinity, trigger receptor activation in cellular assays with motor neurons, and provide remarkable motor neuron protection from amyotrophic lateral sclerosis (ALS) patient-derived astrocytes. Structural studies on the complex between EphA4 ligand-binding domain and a most active agent provide insights into the mechanism of the agents at a molecular level. Together with preliminary in vivo pharmacology studies, the data form a strong foundation for the translation of these agents for the treatment of ALS and potentially other human diseases.


Assuntos
Aminoácidos/farmacologia , Esclerose Lateral Amiotrófica/tratamento farmacológico , Desenho de Fármacos , Fluorenos/farmacologia , Receptor EphA4/agonistas , Aminoácidos/química , Esclerose Lateral Amiotrófica/metabolismo , Animais , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Fluorenos/química , Ensaios de Triagem em Larga Escala , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Estrutura Molecular , Receptor EphA4/metabolismo , Relação Estrutura-Atividade , Termodinâmica
9.
J Med Chem ; 64(8): 4903-4912, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33797903

RESUMO

Modulating disease-relevant protein-protein interactions (PPIs) using pharmacological tools is a critical step toward the design of novel therapeutic strategies. Over the years, however, targeting PPIs has proven a very challenging task owing to the large interfacial areas. Our recent efforts identified possible novel routes for the design of potent and selective inhibitors of PPIs using a structure-based design of covalent inhibitors targeting Lys residues. In this present study, we report on the design, synthesis, and characterizations of the first Lys-covalent BH3 peptide that has a remarkable affinity and selectivity for hMcl-1 over the closely related hBfl-1 protein. Our structural studies, aided by X-ray crystallography, provide atomic-level details of the inhibitor interactions that can be used to further translate these discoveries into novel generation, Lys-covalent pro-apoptotic agents.


Assuntos
Desenho de Fármacos , Lisina/química , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Fragmentos de Peptídeos/química , Proteínas Proto-Oncogênicas/química , Células A549 , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Cinética , Antígenos de Histocompatibilidade Menor/química , Antígenos de Histocompatibilidade Menor/metabolismo , Simulação de Dinâmica Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/farmacologia , Ligação Proteica , Proteínas Proto-Oncogênicas/síntese química , Proteínas Proto-Oncogênicas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Regulação para Cima/efeitos dos fármacos
10.
J Med Chem ; 63(21): 12911-12920, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33107733

RESUMO

Chronic obstructive pulmonary disease (COPD) is a lung disorder characterized by progressive airflow obstruction associated with inflammation and emphysema, and it is currently one of the leading causes of death worldwide. Recent studies with genetically engineered mice reported that during pulmonary inflammation, basophil-derived interleukin-4 can act on lung-infiltrating monocytes causing aberrant expression of the matrix metalloproteinase-12 (MMP-12). MMP-12 activity in turn causes the destruction of alveolar walls leading to emphysema, making it potentially a valid target for pharmacological intervention. Using nuclear magnetic resonance (NMR)- and structure-based optimizations, the current study reports on the optimized novel, potent, and selective MMP-12 inhibitors with single-digit nanomolar affinity in vitro and in vivo efficacy. Using a murine model of elastase-induced emphysema we demonstrated that the most potent agents exhibited a significant decrease in emphysema-like pathology compared to vehicle-treated mice, thus suggesting that the reported agents may potentially be translated into novel therapeutics for the treatment of COPD.


Assuntos
Metaloproteinase 12 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/química , Animais , Sítios de Ligação , Cristalografia por Raios X , Modelos Animais de Doenças , Enfisema/tratamento farmacológico , Enfisema/etiologia , Meia-Vida , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Metaloproteinase 12 da Matriz/química , Inibidores de Metaloproteinases de Matriz/farmacocinética , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Elastase Pancreática/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Peptídeos/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/patologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA