Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
New Phytol ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080986

RESUMO

Angiosperms with large genomes experience nuclear-, cellular-, and organism-level constraints that may limit their phenotypic plasticity and ecological niche, which could increase their risk of extinction. Therefore, we test the hypotheses that large-genomed species are more likely to be threatened with extinction than those with small genomes, and that the effect of genome size varies across three selected covariates: life form, endemism, and climatic zone. We collated genome size and extinction risk information for a representative sample of angiosperms comprising 3250 species, which we analyzed alongside life form, endemism, and climatic zone variables using a phylogenetic framework. Genome size is positively correlated with extinction risk, a pattern driven by a signal in herbaceous but not woody species, regardless of climate and endemism. The influence of genome size is stronger in endemic herbaceous species, but is relatively homogenous across different climates. Beyond its indirect link via endemism and climate, genome size is associated with extinction risk directly and significantly. Genome size may serve as a proxy for difficult-to-measure parameters associated with resilience and vulnerability in herbaceous angiosperms. Therefore, it merits further exploration as a useful biological attribute for understanding intrinsic extinction risk and augmenting plant conservation efforts.

2.
Front Plant Sci ; 15: 1340056, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947944

RESUMO

Reconstructing evolutionary trajectories and transitions that have shaped floral diversity relies heavily on the phylogenetic framework on which traits are modelled. In this study, we focus on the angiosperm order Ranunculales, sister to all other eudicots, to unravel higher-level relationships, especially those tied to evolutionary transitions in flower symmetry within the family Papaveraceae. This family presents an astonishing array of floral diversity, with actinomorphic, disymmetric (two perpendicular symmetry axes), and zygomorphic flowers. We generated nuclear and plastid datasets using the Angiosperms353 universal probe set for target capture sequencing (of 353 single-copy nuclear ortholog genes), together with publicly available transcriptome and plastome data mined from open-access online repositories. We relied on the fossil record of the order Ranunculales to date our phylogenies and to establish a timeline of events. Our phylogenomic workflow shows that nuclear-plastid incongruence accompanies topological uncertainties in Ranunculales. A cocktail of incomplete lineage sorting, post-hybridization introgression, and extinction following rapid speciation most likely explain the observed knots in the topology. These knots coincide with major floral symmetry transitions and thus obscure the order of evolutionary events.

3.
iScience ; 27(6): 109889, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39055604

RESUMO

Vascular plants are exceptional among eukaryotes due to their outstanding genome size diversity which ranges ∼2,400-fold, including the largest genome so far recorded in the angiosperm Paris japonica (148.89 Gbp/1C). Despite available data showing that giant genomes are restricted across the Tree of Life, the biological limits to genome size expansion remain to be established. Here, we report the discovery of an even larger eukaryotic genome in Tmesipteris oblanceolata, a New Caledonian fork fern. At 160.45 Gbp/1C, this record-breaking genome challenges current understanding and opens new avenues to explore the evolutionary dynamics of genomic gigantism.

4.
Methods Mol Biol ; 2703: 111-122, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37646941

RESUMO

Genome size is a plant character with far-reaching implications, ranging from impacts on the financial and computing feasibility of sequencing and assembling genomes all the way to influencing the very ecology and evolution of species. The increasing recognition of the role of genome size in plant science has led to a rising demand for comprehensive and easily accessible sources of genome size data. The Plant DNA C-values database has established itself as a trusted and widely used central hub for users needing to access available plant genome size data, complemented with related cytogenetic (ploidy level) and karyological (chromosome number) information where available. Since its inception in 2001, the database has undergone six major updates to incorporate newly available genome size information, leading to the most recent release (Release 7.1), which comprises data for 12,273 species across all the major land plant and some algal lineages. Here we describe how to use the database efficiently, making use of its different query and filtering settings.


Assuntos
Bases de Dados de Ácidos Nucleicos , Genoma de Planta , Tamanho do Genoma , Citogenética , DNA de Plantas/genética
5.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36769031

RESUMO

Giant genomes are rare across the plant kingdom and their study has focused almost exclusively on angiosperms and gymnosperms. The scarce genetic data that are available for ferns, however, indicate differences in their genome organization and a lower dynamism compared to other plant groups. Tmesipteris is a small genus of mainly epiphytic ferns that occur in Oceania and several Pacific Islands. So far, only two species with giant genomes have been reported in the genus, T. tannensis (1C = 73.19 Gbp) and T. obliqua (1C = 147.29 Gbp). Low-coverage genome skimming sequence data were generated in these two species and analyzed using the RepeatExplorer2 pipeline to identify and quantify the repetitive DNA fraction of these genomes. We found that both species share a similar genomic composition, with high repeat diversity compared to taxa with small (1C < 10 Gbp) genomes. We also found that, in general, characterized repetitive elements have relatively high heterogeneity scores, indicating ancient diverging evolutionary trajectories. Our results suggest that a whole genome multiplication event, accumulation of repetitive elements, and recent activation of those repeats have all played a role in shaping these genomes. It will be informative to compare these data in the future with data from the giant genome of the angiosperm Paris japonica, to determine if the structures observed here are an emergent property of massive genomic inflation or derived from lineage specific processes.


Assuntos
Gleiquênias , Magnoliopsida , Gleiquênias/genética , Genoma de Planta , DNA de Plantas/genética , Sequências Repetitivas de Ácido Nucleico , Genômica/métodos , Magnoliopsida/genética , Evolução Molecular , Filogenia
6.
Plants (Basel) ; 11(20)2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36297761

RESUMO

Cannabis sativa has been used for millennia in traditional medicine for ritual purposes and for the production of food and fibres, thus, providing important and versatile services to humans. The species, which currently has a worldwide distribution, strikes out for displaying a huge morphological and chemical diversity. Differences in Cannabis genome size have also been found, suggesting it could be a useful character to differentiate between accessions. We used flow cytometry to investigate the extent of genome size diversity across 483 individuals belonging to 84 accessions, with a wide range of wild/feral, landrace, and cultivated accessions. We also carried out sex determination using the MADC2 marker and investigated the potential of flow cytometry as a method for early sex determination. All individuals were diploid, with genome sizes ranging from 1.810 up to 2.152 pg/2C (1.189-fold variation), apart from a triploid, with 2.884 pg/2C. Our results suggest that the geographical expansion of Cannabis and its domestication had little impact on its overall genome size. We found significant differences between the genome size of male and female individuals. Unfortunately, differences were, however, too small to be discriminated using flow cytometry through the direct processing of combined male and female individuals.

7.
Plant J ; 112(3): 646-663, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36065632

RESUMO

Simple telomeric repeats composed of six to seven iterating nucleotide units are important sequences typically found at the ends of chromosomes. Here we analyzed their abundance and homogeneity in 42 gymnosperm (29 newly sequenced), 29 angiosperm (one newly sequenced), and eight bryophytes using bioinformatics, conventional cytogenetic and molecular biology approaches to explore their diversity across land plants. We found more than 10 000-fold variation in the amounts of telomeric repeats among the investigated taxa. Repeat abundance was positively correlated with increasing intragenomic sequence heterogeneity and occurrence at non-telomeric positions, but there was no correlation with genome size. The highest abundance/heterogeneity was found in the gymnosperm genus Cycas (Cycadaceae), in which megabase-sized blocks of telomeric repeats (i.e., billions of copies) were identified. Fluorescent in situ hybridization experiments using variant-specific probes revealed canonical Arabidopsis-type telomeric TTTAGGG repeats at chromosome ends, while pericentromeric blocks comprised at least four major telomeric variants with decreasing abundance: TTTAGGG>TTCAGGG >TTTAAGG>TTCAAGG. Such a diversity of repeats was not found in the sister cycad family Zamiaceae or in any other species analyzed. Using immunocytochemistry, we showed that the pericentromeric blocks of telomeric repeats overlapped with histone H3 serine 10 phosphorylation signals. We show that species of Cycas have amplified their telomeric repeats in centromeric and telomeric positions on telocentric chromosomes to extraordinary high levels. The ancestral chromosome number reconstruction suggests their occurrence is unlikely to be the product of ancient Robertsonian chromosome fusions. We speculate as to how the observed chromosome dynamics may be associated with the diversification of cycads.


Assuntos
Cycadopsida , Magnoliopsida , Hibridização in Situ Fluorescente , Cycadopsida/genética , Telômero/genética , Centrômero/genética , Magnoliopsida/genética
8.
Molecules ; 27(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35807319

RESUMO

Cancer is the second cause of death in the world and is foreseen to be responsible for about 16 million deaths in 2040. Approximately, 60% of the drugs used to treat cancer are of natural origin. Besides the extensive use of some of these drugs in therapies, such as those derived from the genus Taxus, a significant number of plants have revealed themselves as useful against cancer in recent years. The field of ethnobotany focuses on documenting traditional knowledge associated with plants, constituting a starting point to uncover the potential of new plant-based drugs to treat or prevent, in this case, tumour diseases and side effects of chemotherapy and radiotherapy. From a series of extensive ethnobotanical prospections across the Catalan linguistic area (CLA), we have recorded uses for 41 taxa with antitumour effects. The two most quoted botanical families are Asteraceae and Ranunculaceae, and the most frequently reported species is Ranunculus parnassifolius, a high-mountain species, which is widely collected for this purpose. The reported species have been used to treat an important number of cancer types, focusing on preventive, palliative, and curative uses, as well as to deal with the side effects of conventional treatments. Comparing our results in CLA with previous data available in the most comprehensive databases of pharmacology and a review of cytotoxicity assays revealed that for the several species reported here, there was no previous evidence of traditional uses against cancer. Despite the need for further analyses to experimentally validate the information presented here, combining traditional uses and phylogenetically-informed strategies to phytochemical and pharmacological research would represent new avenues to establish more integrative approaches, hence improving the ability to select new candidate taxa in cancer research.


Assuntos
Neoplasias , Plantas Medicinais , Humanos , Linguística , Medicina Tradicional/métodos , Neoplasias/tratamento farmacológico , Fitoterapia/métodos
10.
New Phytol ; 236(2): 433-446, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35717562

RESUMO

Genome size varies 2400-fold across plants, influencing their evolution through changes in cell size and cell division rates which impact plants' environmental stress tolerance. Repetitive element expansion explains much genome size diversity, and the processes structuring repeat 'communities' are analogous to those structuring ecological communities. However, which environmental stressors influence repeat community dynamics has not yet been examined from an ecological perspective. We measured genome size and leveraged climatic data for 91% of genera within the ecologically diverse palm family (Arecaceae). We then generated genomic repeat profiles for 141 palm species, and analysed repeats using phylogenetically informed linear models to explore relationships between repeat dynamics and environmental factors. We show that palm genome size and repeat 'community' composition are best explained by aridity. Specifically, Ty3-gypsy and TIR elements were more abundant in palm species from wetter environments, which generally had larger genomes, suggesting amplification. By contrast, Ty1-copia and LINE elements were more abundant in drier environments. Our results suggest that water stress inhibits repeat expansion through selection on upper genome size limits. However, elements that may associate with stress-response genes (e.g. Ty1-copia) have amplified in arid-adapted palm species. Overall, we provide novel evidence of climate influencing the assembly of repeat 'communities'.


Assuntos
Arecaceae , Retroelementos , Arecaceae/genética , Evolução Molecular , Tamanho do Genoma , Genoma de Planta , Filogenia , Análise de Sequência de DNA
11.
Plants (Basel) ; 11(9)2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35567236

RESUMO

Polyploidy is a widespread phenomenon across angiosperms, and one of the main drivers of diversification. Whilst it frequently involves hybridisation, autopolyploidy is also an important feature of plant evolution. Minority cytotypes are frequently overlooked due to their lower frequency in populations, but the development of techniques such as flow cytometry, which enable the rapid screening of cytotype diversity across large numbers of individuals, is now providing a more comprehensive understanding of cytotype diversity within species. Senecio doronicum is a relatively common daisy found throughout European mountain grasslands from subalpine to almost nival elevations. We have carried out a population-level cytotype screening of 500 individuals from Tête Grosse (Alpes-de-Haute-Provence, France), confirming the coexistence of tetraploid (28.2%) and octoploid cytotypes (71.2%), but also uncovering a small number of hexaploid individuals (0.6%). The analysis of repetitive elements from short-read genome-skimming data combined with nuclear (ITS) and whole plastid DNA sequences support an autopolyploid origin of the polyploid S. doronicum individuals and provide molecular evidence regarding the sole contribution of tetraploids in the formation of hexaploid individuals. The evolutionary impact and resilience of the new cytotype have yet to be determined, although the coexistence of different cytotypes may indicate nascent speciation.

12.
G3 (Bethesda) ; 12(7)2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35567476

RESUMO

Increased ecological disturbances, species invasions, and climate change are creating severe conservation problems for several plant species that are widespread and foundational. Understanding the genetic diversity of these species and how it relates to adaptation to these stressors are necessary for guiding conservation and restoration efforts. This need is particularly acute for big sagebrush (Artemisia tridentata; Asteraceae), which was once the dominant shrub over 1,000,000 km2 in western North America but has since retracted by half and thus has become the target of one of the largest restoration seeding efforts globally. Here, we present the first reference-quality genome assembly for an ecologically important subspecies of big sagebrush (A. tridentata subsp. tridentata) based on short and long reads, as well as chromatin proximity ligation data analyzed using the HiRise pipeline. The final 4.2-Gb assembly consists of 5,492 scaffolds, with nine pseudo-chromosomal scaffolds (nine scaffolds comprising at least 90% of the assembled genome; n = 9). The assembly contains an estimated 43,377 genes based on ab initio gene discovery and transcriptional data analyzed using the MAKER pipeline, with 91.37% of BUSCOs being completely assembled. The final assembly was highly repetitive, with repeat elements comprising 77.99% of the genome, making the Artemisia tridentata subsp. tridentata genome one of the most highly repetitive plant genomes to be sequenced and assembled. This genome assembly advances studies on plant adaptation to drought and heat stress and provides a valuable tool for future genomic research.


Assuntos
Artemisia , Artemisia/genética , Cromossomos , Mudança Climática , Haploidia , América do Norte
13.
Plants (Basel) ; 11(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35050070

RESUMO

The genus Urospermum is distributed in the Mediterranean region and Macaronesia, and has been introduced to other extra-Mediterranean regions. Although the two species constituting the genus, U. dalechampii and U. picroides, are frequently found together, hybrids have so far only been reported once, from Morocco. However, we found certain individuals in Catalonia, whose intermediate morphology suggested a potential hybrid origin. In this study, we applied morphological and molecular methods to investigate the origin of those individuals. Intermediate features at phenotype, karyological, cytogenetic, and genomic levels were identified in morphologically intermediate individuals, supporting their homoploid hybrid origin. Chloroplast sequence data suggest that U. dalechampii is the maternal progenitor of the hybrid. Together with the intermediate traits displayed, the lack of fertile seeds suggests that hybrids are probably F1. Future monitoring studies will be, nonetheless, needed to evaluate the extent of hybridisation and its potential impact on the biology of the genus.

14.
15.
Front Genet ; 12: 726211, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552621

RESUMO

Plant genomes are highly diverse in size and repetitive DNA composition. In the absence of polyploidy, the dynamics of repetitive elements, which make up the bulk of the genome in many species, are the main drivers underpinning changes in genome size and the overall evolution of the genomic landscape. The advent of high-throughput sequencing technologies has enabled investigation of genome evolutionary dynamics beyond model plants to provide exciting new insights in species across the biodiversity of life. Here we analyze the evolution of repetitive DNA in two closely related species of Heloniopsis (Melanthiaceae), which despite having the same chromosome number differ nearly twofold in genome size [i.e., H. umbellata (1C = 4,680 Mb), and H. koreana (1C = 2,480 Mb)]. Low-coverage genome skimming and the RepeatExplorer2 pipeline were used to identify the main repeat families responsible for the significant differences in genome sizes. Patterns of repeat evolution were found to correlate with genome size with the main classes of transposable elements identified being twice as abundant in the larger genome of H. umbellata compared with H. koreana. In addition, among the satellite DNA families recovered, a single shared satellite (HeloSAT) was shown to have contributed significantly to the genome expansion of H. umbellata. Evolutionary changes in repetitive DNA composition and genome size indicate that the differences in genome size between these species have been underpinned by the activity of several distinct repeat lineages.

16.
Plants (Basel) ; 10(8)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34451537

RESUMO

Based on results from previous studies, populations of the Iberian endemic Centaurea podospermifolia north of the Ebro River are considered genetically pure, while those southward are introgressed, with genetic input from C. cephalariifolia. This phenomenon is particularly relevant, especially given both the endangered and protected status for the species, which can have consequences in how to best apply conservation strategies to maintain genetic resources in the species. The main goal of this study was to evaluate whether genome size assessments using flow cytometry can help distinguishing between pure, hybrid and introgressed populations, and hence become a powerful and cost-effective tool to complement comprehensive population genetic surveys. The results indicate that there are significant genome size differences between populations of C. podospermifolia, which are coincident with previous considerations of pure and introgressed populations. Given the simplicity and reproducibility of this technique, flow cytometry could become an effective tool for monitoring pure populations of this species and, indeed, become an integral part of the management plans that are mandatory for listed taxa.

17.
Appl Plant Sci ; 9(7)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34336403

RESUMO

PREMISE: Phylogenetic studies in the Compositae are challenging due to the sheer size of the family and the challenges they pose for molecular tools, ranging from the genomic impact of polyploid events to their very conserved plastid genomes. The search for better molecular tools for phylogenetic studies led to the development of the family-specific Compositae1061 probe set, as well as the universal Angiosperms353 probe set designed for all flowering plants. In this study, we evaluate the extent to which data generated using the family-specific kit and those obtained with the universal kit can be merged for downstream analyses. METHODS: We used comparative methods to verify the presence of shared loci between probe sets. Using two sets of eight samples sequenced with Compositae1061 and Angiosperms353, we ran phylogenetic analyses with and without loci flagged as paralogs, a gene tree discordance analysis, and a complementary phylogenetic analysis mixing samples from both sample sets. RESULTS: Our results show that the Compositae1061 kit provides an average of 721 loci, with 9-46% of them presenting paralogs, while the Angiosperms353 set yields an average of 287 loci, which are less affected by paralogy. Analyses mixing samples from both sets showed that the presence of 30 shared loci in the probe sets allows the combination of data generated in different ways. DISCUSSION: Combining data generated using different probe sets opens up the possibility of collaborative efforts and shared data within the synantherological community.

18.
Ann Bot ; 128(5): 639-651, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34318876

RESUMO

BACKGROUND AND AIMS: Genome size varies considerably across the diversity of plant life. Although genome size is, by definition, affected by genetic presence/absence variants, which are ubiquitous in population sequencing studies, genome size is often treated as an intrinsic property of a species. Here, we studied intra- and interspecific genome size variation in taxonomically complex British eyebrights (Euphrasia, Orobanchaceae). Our aim is to document genome size diversity and investigate underlying evolutionary processes shaping variation between individuals, populations and species. METHODS: We generated genome size data for 192 individuals of diploid and tetraploid Euphrasia and analysed genome size variation in relation to ploidy, taxonomy, population affiliation and geography. We further compared the genomic repeat content of 30 samples. KEY RESULTS: We found considerable intraspecific genome size variation, and observed isolation-by-distance for genome size in outcrossing diploids. Tetraploid Euphrasia showed contrasting patterns, with genome size increasing with latitude in outcrossing Euphrasia arctica, but with little genome size variation in the highly selfing Euphrasia micrantha. Interspecific differences in genome size and the genomic proportions of repeat sequences were small. CONCLUSIONS: We show the utility of treating genome size as the outcome of polygenic variation. Like other types of genetic variation, such as single nucleotide polymorphisms, genome size variation may be affected by ongoing hybridization and the extent of population subdivision. In addition to selection on associated traits, genome size is predicted to be affected indirectly by selection due to pleiotropy of the underlying presence/absence variants.


Assuntos
Euphrasia , Evolução Biológica , Variação Genética , Tamanho do Genoma , Genoma de Planta/genética , Hibridização Genética , Ploidias
19.
Plant J ; 107(4): 1003-1015, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34077584

RESUMO

An analysis of over 10 000 plant genome sizes (GSs) indicates that most species have smaller genomes than expected given the incidence of polyploidy in their ancestries, suggesting selection for genome downsizing. However, comparing ancestral GS with the incidence of ancestral polyploidy suggests that the rate of DNA loss following polyploidy is likely to have been very low (4-70 Mb/million years, 4-482 bp/generation). This poses a problem. How might such small DNA losses be visible to selection, overcome the power of genetic drift and drive genome downsizing? Here we explore that problem, focussing on the role that double-strand break (DSB) repair pathways (non-homologous end joining and homologous recombination) may have played. We also explore two hypotheses that could explain how selection might favour genome downsizing following polyploidy: to reduce (i) nitrogen (N) and phosphate (P) costs associated with nucleic acid synthesis in the nucleus and the transcriptome and (ii) the impact of scaling effects of GS on cell size, which influences CO2 uptake and water loss. We explore the hypothesis that losses of DNA must be fastest in early polyploid generations. Alternatively, if DNA loss is a more continuous process over evolutionary time, then we propose it is a byproduct of selection elsewhere, such as limiting the damaging activity of repetitive DNA. If so, then the impact of GS on photosynthesis, water use efficiency and/or nutrient costs at the nucleus level may be emergent properties, which have advantages, but not ones that could have been selected for over generational timescales.


Assuntos
Tamanho do Genoma , Genoma de Planta , Magnoliopsida/genética , Poliploidia , Seleção Genética , Reparo do DNA por Junção de Extremidades , Recombinação Homóloga , Fotossíntese
20.
Ann Bot ; 127(5): 681-695, 2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33598697

RESUMO

BACKGROUND AND AIMS: Extant plant groups with a long fossil history are key elements in understanding vascular plant evolution. Horsetails (Equisetum, Equisetaceae) have a nearly continuous fossil record dating back to the Carboniferous, but their phylogenetic and biogeographic patterns are still poorly understood. We use here the most extensive phylogenetic analysis to date as a framework to evaluate their age, biogeography and genome size evolution. METHODS: DNA sequences of four plastid loci were used to estimate divergence times and investigate the biogeographic history of all extant species of Equisetum. Flow cytometry was used to study genome size evolution against the framework of phylogenetic relationships in Equisetum. KEY RESULTS: On a well-supported phylogenetic tree including all extant Equisetum species, a molecular clock calibrated with multiple fossils places the node at which the outgroup and Equisetum diverged at 343 Mya (Early Carboniferous), with the first major split among extant species occurring 170 Mya (Middle Jurassic). These dates are older than those reported in some other recent molecular clock studies but are largely in agreement with a timeline established by fossil appearance in the geological record. Representatives of evergreen subgenus Hippochaete have much larger genome sizes than those of deciduous subgenus Equisetum, despite their shared conserved chromosome number. Subgenus Paramochaete has an intermediate genome size and maintains the same number of chromosomes. CONCLUSIONS: The first divergences among extant members of the genus coincided with the break-up of Pangaea and the resulting more humid, warmer climate. Subsequent tectonic activity most likely involved vicariance events that led to species divergences combined with some more recent, long-distance dispersal events. We hypothesize that differences in genome size between subgenera may be related to the number of sperm flagellae.


Assuntos
Equisetum , Traqueófitas , Equisetum/genética , Evolução Molecular , Fósseis , Tamanho do Genoma , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA