Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(23): e2308811121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38805274

RESUMO

Climate change will likely shift plant and microbial distributions, creating geographic mismatches between plant hosts and essential microbial symbionts (e.g., ectomycorrhizal fungi, EMF). The loss of historical interactions, or the gain of novel associations, can have important consequences for biodiversity, ecosystem processes, and plant migration potential, yet few analyses exist that measure where mycorrhizal symbioses could be lost or gained across landscapes. Here, we examine climate change impacts on tree-EMF codistributions at the continent scale. We built species distribution models for 400 EMF species and 50 tree species, integrating fungal sequencing data from North American forest ecosystems with tree species occurrence records and long-term forest inventory data. Our results show the following: 1) tree and EMF climate suitability to shift toward higher latitudes; 2) climate shifts increase the size of shared tree-EMF habitat overall, but 35% of tree-EMF pairs are at risk of declining habitat overlap; 3) climate mismatches between trees and EMF are projected to be greater at northern vs. southern boundaries; and 4) tree migration lag is correlated with lower richness of climatically suitable EMF partners. This work represents a concentrated effort to quantify the spatial extent and location of tree-EMF climate envelope mismatches. Our findings also support a biotic mechanism partially explaining the failure of northward tree species migrations with climate change: reduced diversity of co-occurring and climate-compatible EMF symbionts at higher latitudes. We highlight the conservation implications for identifying areas where tree and EMF responses to climate change may be highly divergent.


Assuntos
Mudança Climática , Micorrizas , Simbiose , Árvores , Micorrizas/fisiologia , Árvores/microbiologia , América do Norte , Florestas , Biodiversidade , Ecossistema
2.
mSystems ; 9(6): e0036924, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38717159

RESUMO

Most of Earth's trees rely on critical soil nutrients that ectomycorrhizal fungi (EcMF) liberate and provide, and all of Earth's land plants associate with bacteria that help them survive in nature. Yet, our understanding of how the presence of EcMF modifies soil bacterial communities, soil food webs, and root chemistry requires direct experimental evidence to comprehend the effects that EcMF may generate in the belowground plant microbiome. To this end, we grew Pinus muricata plants in soils that were either inoculated with EcMF and native forest bacterial communities or only native bacterial communities. We then profiled the soil bacterial communities, applied metabolomics and lipidomics, and linked omics data sets to understand how the presence of EcMF modifies belowground biogeochemistry, bacterial community structure, and their functional potential. We found that the presence of EcMF (i) enriches soil bacteria linked to enhanced plant growth in nature, (ii) alters the quantity and composition of lipid and non-lipid soil metabolites, and (iii) modifies plant root chemistry toward pathogen suppression, enzymatic conservation, and reactive oxygen species scavenging. Using this multi-omic approach, we therefore show that this widespread fungal symbiosis may be a common factor for structuring soil food webs.IMPORTANCEUnderstanding how soil microbes interact with one another and their host plant will help us combat the negative effects that climate change has on terrestrial ecosystems. Unfortunately, we lack a clear understanding of how the presence of ectomycorrhizal fungi (EcMF)-one of the most dominant soil microbial groups on Earth-shapes belowground organic resources and the composition of bacterial communities. To address this knowledge gap, we profiled lipid and non-lipid metabolites in soils and plant roots, characterized soil bacterial communities, and compared soils amended either with or without EcMF. Our results show that the presence of EcMF changes soil organic resource availability, impacts the proliferation of different bacterial communities (in terms of both type and potential function), and primes plant root chemistry for pathogen suppression and energy conservation. Our findings therefore provide much-needed insight into how two of the most dominant soil microbial groups interact with one another and with their host plant.


Assuntos
Bactérias , Cadeia Alimentar , Microbiota , Micorrizas , Pinus , Raízes de Plantas , Microbiologia do Solo , Micorrizas/fisiologia , Pinus/microbiologia , Bactérias/metabolismo , Bactérias/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Microbiota/fisiologia , Simbiose , Solo/química
3.
ISME Commun ; 4(1): ycae031, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38524763

RESUMO

Functional traits influence the assembly of microbial communities, but identifying these traits in the environment has remained challenging. We studied ectomycorrhizal fungal (EMF) communities inhabiting Populus trichocarpa roots distributed across a precipitation gradient in the Pacific Northwest, USA. We profiled these communities using taxonomic (meta-barcoding) and functional (metagenomic) approaches. We hypothesized that genes involved in fungal drought-stress tolerance and fungal mediated plant water uptake would be most abundant in drier soils. We were unable to detect support for this hypothesis; instead, the abundance of genes involved in melanin synthesis, hydrophobins, aquaporins, trehalose-synthases, and other gene families exhibited no significant shifts across the gradient. Finally, we studied variation in sequence homology for certain genes, finding that fungal communities in dry soils are composed of distinct aquaporin and hydrophobin gene sequences. Altogether, our results suggest that while EMF communities exhibit significant compositional shifts across this gradient, coupled functional turnover, at least as inferred using community metagenomics is limited. Accordingly, the consequences of these distinct EMF communities on plant water uptake remain critically unknown, and future studies targeting the expression of genes involved in drought stress tolerance are required.

4.
Curr Biol ; 33(14): 2878-2887.e4, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37369208

RESUMO

Bacteria, ectomycorrhizal (EcM) fungi, and land plants have been coevolving for nearly 200 million years, and their interactions presumably contribute to the function of terrestrial ecosystems. The direction, stability, and strength of bacteria-EcM fungi interactions across landscapes and across a single plant host, however, remains unclear. Moreover, the genetic mechanisms that govern them have not been addressed. To these ends, we collected soil samples from Bishop pine forests across a climate-latitude gradient spanning coastal California, fractionated the soil samples based on their proximity to EcM-colonized roots, characterized the microbial communities using amplicon sequencing, and generated linear regression models showing the impact that select bacterial taxa have on EcM fungal abundance. In addition, we paired greenhouse experiments with transcriptomic analyses to determine the directionality of these relationships and identify which genes EcM-synergist bacteria express during tripartite symbioses. Our data reveal that ectomycorrhizas (i.e., EcM-colonized roots) enrich conserved bacterial taxa across climatically heterogeneous regions. We also show that phylogenetically diverse EcM synergists are positively associated with plant and fungal growth and have unique gene expression profiles compared with EcM-antagonist bacteria. In sum, we identify common mechanisms that facilitate widespread and diverse multipartite symbioses, which inform our understanding of how plants develop in complex environments.


Assuntos
Micorrizas , Micorrizas/genética , Micorrizas/metabolismo , Ecossistema , Florestas , Plantas/microbiologia , Raízes de Plantas , Bactérias/genética , Solo , Microbiologia do Solo , Fungos/genética , Árvores/microbiologia
5.
Mol Ecol ; 32(8): 2005-2021, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36650921

RESUMO

Understanding how genetic differences among soil microorganisms regulate spatial patterns in litter decay remains a persistent challenge in ecology. Despite fine root litter accounting for ~50% of total litter production in forest ecosystems, far less is known about the microbial decay of fine roots relative to aboveground litter. Here, we evaluated whether fine root decay occurred more rapidly where fungal communities have a greater genetic potential for litter decay. Additionally, we tested if linkages between decay and fungal genes can be adequately captured by delineating saprotrophic and ectomycorrhizal fungal functional groups based on whether they have genes encoding certain ligninolytic class II peroxidase enzymes, which oxidize lignin and polyphenolic compounds. To address these ideas, we used a litterbag study paired with fungal DNA barcoding to characterize fine root decay rates and fungal community composition at the landscape scale in northern temperate forests, and we estimated the genetic potential of fungal communities for litter decay using publicly available genomes. Fine root decay occurred more rapidly where fungal communities had a greater genetic potential for decay, especially of cellulose and hemicellulose. Fine root decay was positively correlated with ligninolytic saprotrophic fungi and negatively correlated with ECM fungi with ligninolytic peroxidases, likely because these saprotrophic and ectomycorrhizal functional groups had the highest and lowest genetic potentials for plant cell wall degradation, respectively. These fungal variables overwhelmed direct environmental controls, suggesting fungal community composition and genetic variation are primary controls over fine root decay in temperate forests at regional scales.


Assuntos
Micobioma , Micorrizas , Ecossistema , Florestas , Micorrizas/fisiologia , Plantas , Microbiologia do Solo , Fungos/genética , Solo , Árvores/microbiologia
6.
Ecol Lett ; 25(2): 391-404, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34787356

RESUMO

Interactions between soil nitrogen (N) availability, fungal community composition, and soil organic matter (SOM) regulate soil carbon (C) dynamics in many forest ecosystems, but context dependency in these relationships has precluded general predictive theory. We found that ectomycorrhizal (ECM) fungi with peroxidases decreased with increasing inorganic N availability across a natural inorganic N gradient in northern temperate forests, whereas ligninolytic fungal saprotrophs exhibited no response. Lignin-derived SOM and soil C were negatively correlated with ECM fungi with peroxidases and were positively correlated with inorganic N availability, suggesting decay of lignin-derived SOM by these ECM fungi reduced soil C storage. The correlations we observed link SOM decay in temperate forests to tradeoffs in tree N nutrition and ECM composition, and we propose SOM varies along a single continuum across temperate and boreal ecosystems depending upon how tree allocation to functionally distinct ECM taxa and environmental stress covary with soil N availability.


Assuntos
Micorrizas , Ecossistema , Florestas , Fungos , Nitrogênio/análise , Solo , Microbiologia do Solo
7.
New Phytol ; 232(5): 2152-2164, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34533216

RESUMO

The extent to which ectomycorrhizal (ECM) fungi decay soil organic matter (SOM) has implications for accurately predicting forest ecosystem response to climate change. Investigating the distribution of gene traits associated with SOM decay among ectomycorrhizal fungal communities could improve understanding of SOM dynamics and plant nutrition. We hypothesized that soil inorganic nitrogen (N) availability structures the distribution of ECM fungal genes associated with SOM decay and, specifically, that ECM fungal communities occurring in inorganic N-poor soils have greater SOM decay potential. To test this hypothesis, we paired amplicon and shotgun metagenomic sequencing of 60 ECM fungal communities associating with Quercus rubra along a natural soil inorganic N gradient. Ectomycorrhizal fungal communities occurring in low inorganic N soils were enriched in gene families involved in the decay of lignin, cellulose, and chitin. Ectomycorrhizal fungal community composition was the strongest driver of shifts in metagenomic estimates of fungal decay potential. Our study simultaneously illuminates the identity of key ECM fungal taxa and gene families potentially involved in the decay of SOM, and we link rhizomorphic and medium-distance hyphal morphologies with enhanced SOM decay potential. Coupled shifts in ECM fungal community composition and community-level decay gene frequencies are consistent with outcomes of trait-mediated community assembly processes.


Assuntos
Micorrizas , Ecossistema , Nitrogênio , Solo , Microbiologia do Solo
8.
Nat Commun ; 12(1): 5403, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34518539

RESUMO

Plant-mycorrhizal interactions mediate plant nitrogen (N) limitation and can inform model projections of the duration and strength of the effect of increasing CO2 on plant growth. We present dendrochronological evidence of a positive, but context-dependent fertilization response of Quercus rubra L. to increasing ambient CO2 (iCO2) along a natural soil nutrient gradient in a mature temperate forest. We investigated this heterogeneous response by linking metagenomic measurements of ectomycorrhizal (ECM) fungal N-foraging traits and dendrochronological models of plant uptake of inorganic N and N bound in soil organic matter (N-SOM). N-SOM putatively enhanced tree growth under conditions of low inorganic N availability, soil conditions where ECM fungal communities possessed greater genomic potential to decay SOM and obtain N-SOM. These trees were fertilized by 38 years of iCO2. In contrast, trees occupying inorganic N rich soils hosted ECM fungal communities with reduced SOM decay capacity and exhibited neutral growth responses to iCO2. This study elucidates how the distribution of N-foraging traits among ECM fungal communities govern tree access to N-SOM and subsequent growth responses to iCO2.

9.
Mol Ecol ; 28(23): 5188-5198, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31495020

RESUMO

The factors that control the assembly and composition of endophyte communities across plant hosts remains poorly understood. This is especially true for endophyte communities inhabiting inner tree bark, one of the least studied components of the plant microbiome. Here, we test the hypothesis that bark of different tree species acts as an environmental filter structuring endophyte communities, as well as the alternative hypothesis, that bark acts as a passive reservoir that accumulates a diverse assemblage of spores and latent fungal life stages. We develop a means of extracting high-quality DNA from surface sterilized tree bark to compile the first culture-independent study of inner bark fungal communities. We sampled a total of 120 trees, spanning five dominant overstorey species across multiple sites in a mixed temperate hardwood forest. We find that each of the five tree species harbour unique assemblages of inner bark fungi and that angiosperm and gymnosperm hosts harbour significantly different fungal communities. Chemical components of tree bark (pH, total phenolic content) structure some of the differences detected among fungal communities residing in particular tree species. Inner bark fungal communities were highly diverse (mean of 117-171 operational taxonomic units per tree) and dominated by a range of Ascomycete fungi living asymptomatically as putative endophytes. Together, our evidence supports the hypothesis that tree bark acts as an environmental filter structuring inner bark fungal communities. The role of these potentially ubiquitous and plant-specific fungal communities remains uncertain and merits further study.


Assuntos
Ascomicetos/genética , Ecossistema , Filogenia , Casca de Planta/genética , Biodiversidade , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Endófitos/genética , Micobioma/genética , Casca de Planta/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Plantas/genética , Plantas/microbiologia , Análise de Sequência de DNA , Especificidade da Espécie
10.
New Phytol ; 223(1): 33-39, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30636276

RESUMO

The extent to which ectomycorrhizal (ECM) fungi enable plants to access organic nitrogen (N) bound in soil organic matter (SOM) and transfer this growth-limiting nutrient to their plant host, has important implications for our understanding of plant-fungal interactions, and the cycling and storage of carbon (C) and N in terrestrial ecosystems. Empirical evidence currently supports a range of perspectives, suggesting that ECM vary in their ability to provide their host with N bound in SOM, and that this capacity can both positively and negatively influence soil C storage. To help resolve the multiplicity of observations, we gathered a group of researchers to explore the role of ECM fungi in soil C dynamics, and propose new directions that hold promise to resolve competing hypotheses and contrasting observations. In this Viewpoint, we summarize these deliberations and identify areas of inquiry that hold promise for increasing our understanding of these fundamental and widespread plant symbionts and their role in ecosystem-level biogeochemistry.


Assuntos
Carbono/metabolismo , Micorrizas/fisiologia , Microbiologia do Solo , Solo/química , Nitrogênio/metabolismo , Filogenia
11.
New Phytol ; 217(1): 68-73, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29193221

RESUMO

Contents Summary 68 I. Introduction 68 II. Have ECM fungi retained genes with lignocellulolytic potential from saprotrophic ancestors? 69 III. Are genes with saprotrophic function expressed by ECM fungi when in symbiosis? 71 IV. Do transcribed enzymes operate to obtain N from SOM? 71 V. Is the organic N derived from SOM transferred to the plant host? 71 VI. Concluding remarks 72 Acknowledgements 72 References 72 SUMMARY: The view that ectomycorrhizal (ECM) fungi commonly participate in the enzymatic liberation of nitrogen (N) from soil organic matter (SOM) has recently been invoked as a key mechanism governing the biogeochemical cycles of forest ecosystems. Here, we provide evidence that not all evolutionary lineages of ECM have retained the genetic potential to produce extracellular enzymes that degrade SOM, calling into question the ubiquity of the proposed mechanism. Further, we discuss several untested conditions that must be empirically validated before it is certain that any lineage of ECM fungi actively expresses extracellular enzymes in order to degrade SOM and transfer N contained therein to its host plant.


Assuntos
Evolução Biológica , Micorrizas/genética , Nitrogênio/metabolismo , Plantas/microbiologia , Simbiose , Ecossistema , Florestas , Micorrizas/fisiologia , Plantas/metabolismo , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA