RESUMO
The percentage of obese people is increasing worldwide, causing versatile health problems. Obesity is connected to diseases such as diabetes and cardiovascular diseases, which are preceded by a state called metabolic syndrome. Diets rich in fruits and vegetables have been reported to decrease the risk of metabolic syndrome and type 2 diabetes. Berries with a high polyphenol content, including lingonberry (Vaccinium vitis-idaea L.), have also been of interest to possibly prevent obesity-induced metabolic disturbances. In the present study, we prepared an extract from the by-product of a lingonberry juice production process (press cake/pomace) and investigated its metabolic effects in the high-fat diet-induced model of obesity in mice. The lingonberry skin extract partly prevented weight and epididymal fat gain as well as a rise in fasting glucose level in high-fat diet-fed mice. The extract also attenuated high-fat diet-induced glucose intolerance as measured by an intraperitoneal glucose tolerance test (IPGTT). The extract had no effect on the levels of cholesterol, triglyceride or the adipokines adiponectin, leptin, or resistin. The results extend previous data on the beneficial metabolic effects of lingonberry. Further research is needed to explore the mechanisms behind these effects and to develop further health-promoting lingonberry applications.
Assuntos
Dieta Hiperlipídica , Modelos Animais de Doenças , Frutas , Hiperglicemia , Obesidade , Extratos Vegetais , Vaccinium vitis-Idaea , Aumento de Peso , Animais , Dieta Hiperlipídica/efeitos adversos , Vaccinium vitis-Idaea/química , Obesidade/etiologia , Extratos Vegetais/farmacologia , Masculino , Aumento de Peso/efeitos dos fármacos , Frutas/química , Hiperglicemia/tratamento farmacológico , Hiperglicemia/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Glicemia/metabolismo , Glicemia/efeitos dos fármacosRESUMO
Macrophages are pleiotropic immune cells whose phenotype can polarize towards the pro-inflammatory M1 or anti-inflammatory M2 direction as a response to environmental changes. In obesity, the number of macrophages in adipose tissue is enhanced, and they shift towards the M1 phenotype. Activated M1 macrophages secrete pro-inflammatory cytokines and adipokines involved in the development of systemic low-grade inflammation, complicating obesity. Polyphenols are widely found in the vegetable kingdom and have anti-inflammatory properties. We and others have recently found that lingonberry (Vaccinium vitis-idaea L.) supplementation is able to prevent the development of low-grade inflammation and its metabolic consequences in experimentally induced obesity. In the present study, we investigated the effects of twelve phenolic compounds known to be present in lingonberry (resveratrol, piceid, quercetin, kaempferol, proanthocyanidins, delphinidin, cyanidin, benzoic acid, cinnamic acid, coumaric acid, caffeic acid, and ferulic acid) on macrophage polarization, which is a meaningful mechanism determining the low-grade inflammation in obesity. Mouse J774 and human U937 macrophages and commercially available phenolic compounds were used in the studies. Three of the twelve compounds investigated showed an effect on macrophage polarization. Resveratrol, kaempferol, and proanthocyanidins enhanced anti-inflammatory M2-type activation, evidenced as increased expression of Arg-1 and MRC-1 in murine macrophages and CCL-17 and MRC-1 in human macrophages. Resveratrol and kaempferol also inhibited pro-inflammatory M1-type activation, shown as decreased expression of IL-6, NO, and MCP-1 in murine macrophages and TNF-α and IL-6 in human macrophages. In the further mechanistic studies, the effects of the three active compounds were investigated on two transcription factors important in M2 activation, namely on PPARγ and STAT6. Resveratrol and kaempferol were found to enhance PPARγ expression, while proanthocyanidins increased the phosphorylation of STAT6. The results suggest proanthocyanidins, resveratrol, and kaempferol as active constituents that may be responsible for the positive anti-inflammatory effects of lingonberry supplementation in obesity models. These data also extend the previous knowledge on the anti-inflammatory effects of lingonberry and encourage further studies to support the use of lingonberry and lingonberry-based products as a part of a healthy diet.
RESUMO
Obesity is an increasing problem worldwide. It is often associated with co-morbidities such as type II diabetes, atherosclerotic diseases, and non-alcoholic fatty liver disease. The risk of these diseases can be lowered by relieving the systemic low-grade inflammation associated with obesity, even without noticeable weight loss. Bilberry is an anthocyanin-rich wild berry with known antioxidant and anti-inflammatory properties. In the present study, a high-fat-diet-induced mouse model of obesity was used to investigate the effects of air-dried bilberry powder on weight gain, systemic inflammation, lipid and glucose metabolism, and changes in the gene expression in adipose and hepatic tissues. The bilberry supplementation was unable to modify the weight gain, but it prevented the increase in the hepatic injury marker ALT and many inflammatory factors like SAA, MCP1, and CXCL14 induced by the high-fat diet. The bilberry supplementation also partially prevented the increase in serum cholesterol, glucose, and insulin levels. In conclusion, the bilberry supplementation alleviated the systemic and hepatic inflammation and retarded the development of unwanted changes in the lipid and glucose metabolism induced by the high-fat diet. Thus, the bilberry supplementation seemed to support to retain a healthier metabolic phenotype during developing obesity, and that effect might have been contributed to by bilberry anthocyanins.
Assuntos
Diabetes Mellitus Tipo 2 , Insulinas , Vaccinium myrtillus , Animais , Antocianinas/farmacologia , Antocianinas/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Colesterol/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Glucose/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipídeos/uso terapêutico , Camundongos , Obesidade/etiologia , Obesidade/genética , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Pós/uso terapêutico , Aumento de PesoRESUMO
Metabolic diseases linked to obesity are an increasing problem globally. They are associated with systemic inflammation, which can be triggered by nutrients such as saturated fatty acids. Cloudberry is rich in ellagitannin and its derivatives, which are known to have anti-inflammatory properties. In the present study, a high-fat-diet-induced mouse model of obesity was used to study the effects of air-dried cloudberry powder on weight gain, systemic inflammation, lipid and glucose metabolism, and changes in gene expression in hepatic and adipose tissues. Cloudberry supplementation had no effect on weight gain, but it prevented the rise in the systemic inflammation marker serum amyloid A (SAA) and the hepatic inflammation/injury marker alanine aminotransferase (ALT), as well as the increase in the expression of many inflammation-related genes in the liver and adipose tissue, such as Mcp1, Cxcl14, Tnfa, and S100a8. In addition, cloudberry supplementation impeded the development of hypercholesterolemia and hyperglycemia. The results indicate that cloudberry supplementation helps to protect against the development of metabolic inflammation and provides partial protection against disturbed lipid and glucose metabolism. These results encourage further studies on the effects of cloudberry and cloudberry-derived ellagitannins and support the use of cloudberries as a part of a healthy diet to prevent obesity-associated metabolic morbidity.
Assuntos
Rubus , Alanina Transaminase , Animais , Dieta Hiperlipídica , Suplementos Nutricionais , Modelos Animais de Doenças , Ácidos Graxos , Glucose , Taninos Hidrolisáveis/farmacologia , Inflamação/prevenção & controle , Lipídeos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/prevenção & controle , Pós , Proteína Amiloide A Sérica , Aumento de PesoRESUMO
The prevalence of nonalcoholic fatty liver disease (NAFLD) is growing worldwide in association with Western-style diet and increasing obesity. Lingonberry (Vaccinium vitis-idaea L.) is rich in polyphenols and has been shown to attenuate adverse metabolic changes in obese liver. This paper investigated the effects of lingonberry supplementation on hepatic gene expression in high-fat diet induced obesity in a mouse model. C57BL/6N male mice were fed for six weeks with either a high-fat (HF) or low-fat (LF) diet (46% and 10% energy from fat, respectively) or HF diet supplemented with air-dried lingonberry powder (HF + LGB). HF diet induced a major phenotypic change in the liver, predominantly affecting genes involved in inflammation and in glucose and lipid metabolism. Lingonberry supplementation prevented the effect of HF diet on an array of genes (in total on 263 genes) associated particularly with lipid or glucose metabolic process (such as Mogat1, Plin4, Igfbp2), inflammatory/immune response or cell migration (such as Lcn2, Saa1, Saa2, Cxcl14, Gcp1, S100a10) and cell cycle regulation (such as Cdkn1a, Tubb2a, Tubb6). The present results suggest that lingonberry supplementation prevents HF diet-induced adverse changes in the liver that are known to predispose the development of NAFLD and its comorbidities. The findings encourage carrying out human intervention trials to confirm the results, with the aim of recommending the use of lingonberries as a part of healthy diet against obesity and its hepatic and metabolic comorbidities.
Assuntos
Dieta Hiperlipídica , Suplementos Nutricionais , Comportamento Alimentar , Regulação da Expressão Gênica , Fígado/metabolismo , Vaccinium vitis-Idaea/química , Animais , Peso Corporal , Regulação para Baixo/genética , Perfilação da Expressão Gênica , Ontologia Genética , Masculino , Camundongos Endogâmicos C57BL , Tamanho do Órgão , Regulação para Cima/genéticaRESUMO
In the northern boreal zone, revegetation and landscaping of closed mine tailings are challenging due to the high concentrations of potentially toxic elements; the use of nutrient-poor, glacigenic cover material (till); cool temperatures; and short growing period. Recycled waste materials such as biochar (BC) and composted sewage sludge (CSS) have been suggested to improve soil forming process and revegetation success as well as decrease metal bioavailability in closed mine tailing areas. We conducted two field experiments in old iron mine tailings at Rautuvaara, northern Finland, where the native mine soil or transported cover till soil had not supported plant growth since the mining ended in 1989. The impacts of CSS and spruce (Picea abies)-derived BC application to till soil on the survival and growth of selected plant species (Pinus sylvestris, Salix myrsinifolia, and grass mixture containing Festuca rubra, Lolium perenne, and Trifolium repens) were investigated during two growing seasons. In addition, the potential of BC to reduce bioaccumulation of metals in plants was studied. We found that (1) organic amendment like CSS markedly enhanced the plant growth and is therefore needed for vegetation establishment in tailing sites that contained only transported till cover, and (2) BC application to till soil-CSS mixture further facilitated the success of grass mixtures resulting in 71-250% higher plant biomass. On the other hand, (3) no effects on P. sylvestris or S. myrsinifolia were recorded during the first growing seasons, and (4) accumulation of metals in cover plants was negligible and BC application to till further decreased the accumulation of Al, Cr, and Fe in the plant tissues.
Assuntos
Compostagem , Lolium , Poluentes do Solo , Bioacumulação , Carvão Vegetal , Finlândia , Poluentes do Solo/análiseRESUMO
Obesity is a constantly increasing health problem worldwide. It is associated with a systemic low-grade inflammation, which contributes to the development of metabolic disorders and comorbidities such as type 2 diabetes. Diet has an important role in the prevention of obesity and its adverse health effects; as a part of healthy diet, polyphenol-rich berries, such as lingonberry (Vaccinium vitis-idaea L.) have been proposed to have health-promoting effects. In the present study, we investigated the effects of lingonberry supplementation on high-fat diet induced metabolic and inflammatory changes in a mouse model of obesity. Thirty male C57BL/6N mice were divided into three groups (n = 10/group) to receive low-fat (LF), high-fat (HF) and lingonberry-supplemented high-fat (HF+LGB) diet for six weeks. Low-fat and high-fat diet contained 10% and 46% of energy from fat, respectively. Lingonberry supplementation prevented the high-fat diet induced adverse changes in blood cholesterol and glucose levels and had a moderate effect on the weight and visceral fat gain, which were 26% and 25% lower, respectively, in the lingonberry group than in the high-fat diet control group. Interestingly, lingonberry supplementation also restrained the high-fat diet induced increases in the circulating levels of the proinflammatory adipocytokine leptin (by 36%) and the inflammatory acute phase reactant serum amyloid A (SAA; by 85%). Similar beneficial effects were discovered in the hepatic expression of the inflammatory factors CXCL-14, S100A10 and SAA by lingonberry supplementation. In conclusion, the present results indicate that lingonberry supplementation significantly prevents high-fat diet induced metabolic and inflammatory changes in a murine model of obesity. The results encourage evaluation of lingonberries as a part of healthy diet against obesity and its comorbidities.
Assuntos
Suplementos Nutricionais , Frutas , Inflamação/dietoterapia , Obesidade/dietoterapia , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vaccinium vitis-Idaea/metabolismoRESUMO
The demand for dry juniper (Juniperus communis) needles as a raw material for the food, pharmaceutical, and cosmetic industries has increased rapidly in recent years. Juniper needles are known to be rich in terpenoids and phenolics, but their chemical composition and antibacterial properties have not been well-characterized. In this study, we describe the soluble phenolic and terpenoid composition of juniper needles collected in Finland (n = 125) and demonstrate that the concentration of these compounds clearly increased with latitude and altitude with, however, a stronger latitudinal effect (a higher content of monoterpenoids, proanthocyanidins, and flavonols in northern latitudes). Analysis of methanolic extracts showed quite good activity against both antibiotic-sensitive and -resistant Staphylococcus aureus strains and suggested an important role of the soluble phenolic fraction. Finally, we demonstrate the relative lack of toxicity of juniper extracts on keratinocytes and fibroblastic cells, raising the possibility of their use in preventing bacterial skin infection.
Assuntos
Antibacterianos/análise , Juniperus/química , Fenóis/análise , Extratos Vegetais/análise , Folhas de Planta/química , Terpenos/análise , Altitude , Antibacterianos/efeitos adversos , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Linhagem Celular Tumoral , Fibroblastos/efeitos dos fármacos , Finlândia , Humanos , Queratinócitos/efeitos dos fármacos , Fenóis/efeitos adversos , Fenóis/farmacologia , Extratos Vegetais/efeitos adversos , Extratos Vegetais/farmacologia , Terpenos/efeitos adversos , Terpenos/farmacologiaRESUMO
Resin salve prepared from Norway spruce (Picea abies) has been used for centuries in traditional medicine to treat skin diseases. The authors studied with transmission and scanning electron microscopy, and with electron physiology, changes in cell wall and cell membrane of Staphylococcus aureus after exposure of the bacterial cultures to resin. After exposure, cell wall thickening, cell aggregation, changed branching of fatty acids, and dissipation of membrane potential of the bacterial cells were observed. The authors conclude that spruce resin affects the cell viability via changes in the cell wall and membrane, and impairs, thereby, the synthesis of energy in the bacteria.
Assuntos
Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Picea , Resinas Vegetais/farmacologia , Membrana Celular/ultraestrutura , Parede Celular/ultraestrutura , Viabilidade Microbiana/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de TransmissãoRESUMO
The nitrifying activity and the effect of fertilization with urea and methylene urea were studied in a landfarming site. The site has been operative over 20 years and maintained by heavy nitrogen fertilization. The landfarming soil contained 4-6% (w/w) oil. The nitrate accumulation was 20-50mg NO3-N day(-1)kg(-1) observed after methylene urea fertilization of 889 g Nm(-2). Nitrification ex situ (in laboratory conditions) was 8.8 mg NO3-N day(-1) kg(-1) in the presence of 380 mg kg(-1) NH4+-N. The half-saturation concentration of nitrification was more than 200 mg NH4+-N kg(-1). The results show that nitrification was active in soil with high oil concentration. Urea fertilization of 893 g Nm(-2) caused an increase of soil NH4+-N concentration up to 5500 mg kg(-1) and pH>8.5. This led to inhibition of nitrification, which persisted after NH4+ concentration decreased below 200mg NH4+ kg(-1).
Assuntos
Agricultura , Poluição Ambiental , Recuperação e Remediação Ambiental/métodos , Nitrogênio , Petróleo , Microbiologia do Solo , Fertilizantes , Finlândia , Resíduos Industriais , Nitrogênio/análise , Solo/análise , UreiaRESUMO
The mineralization potential of forest humus and the self-cleaning potential of a boreal coniferous forest environment for polycyclic aromatic hydrocarbon (PAH) compounds was studied using a model ecosystem of acid forest humus (pH = 3.6) and pyrene as the model compound. The matrix was natural humus or humus mixed with oil-polluted soil in the presence and absence of Scots pine (Pinus sylvestris L.) and its mycorrhizal fungus (Paxillus involutus). The rates of pyrene mineralization in the microcosms with humus implants (without pine) were initially insignificant but increased from Day 64 onward to 47 microg kg(-1) d(-1) and further to 144 microg kg(-1) d(-1) after Day 105. In the pine-planted humus microcosms the rate of mineralization also increased, reaching 28 microg kg(-1) d(-1) after Day 105. The 14CO2 emission was already considerable in nonplanted microcosms containing oily soil at Day 21 and the pyrene mineralization continued throughout the study. The pyrene was converted to CO2 at rates of 0.07 and 0.6 microg kg(-1) d(-1) in the oily-soil implanted microcosms with and without pine, respectively. When the probable assimilation of 14CO2 by the pine and ground vegetation was taken into account the most efficient microcosm mineralized 20% of the 91.2 mg kg(-1) pyrene in 180 d. The presence of pine and its mycorrhizal fungus had no statistically significant effect on mineralization yields. The rates of pyrene mineralization observed in this study for forest humus exceeded the total annual deposition rate of PAHs in southern Finland. This indicates that accumulation in forest soil is not to be expected.