Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nat Sci (Weinh) ; 4(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38505006

RESUMO

As amniote vertebrates, lizards are the most closely related organisms to humans capable of appendage regeneration. Lizards can autotomize, or release their tails as a means of predator evasion, and subsequently regenerate a functional replacement. Green anoles (Anolis carolinensis) can regenerate their tails through a process that involves differential expression of hundreds of genes, which has previously been analyzed by transcriptomic and microRNA analysis. To investigate protein expression in regenerating tissue, we performed whole proteomic analysis of regenerating tail tip and base. This is the first proteomic data set available for any anole lizard. We identified a total of 2,646 proteins - 976 proteins only in the regenerating tail base, 796 only in the tail tip, and 874 in both tip and base. For over 90% of these proteins in these tissues, we were able to assign a clear orthology to gene models in either the Ensembl or NCBI databases. For 13 proteins in the tail base, 9 proteins in the tail tip, and 10 proteins in both regions, the gene model in Ensembl and NCBI matched an uncharacterized protein, confirming that these predictions are present in the proteome. Ontology and pathways analysis of proteins expressed in the regenerating tail base identified categories including actin filament-based process, ncRNA metabolism, regulation of phosphatase activity, small GTPase mediated signal transduction, and cellular component organization or biogenesis. Analysis of proteins expressed in the tail tip identified categories including regulation of organelle organization, regulation of protein localization, ubiquitin-dependent protein catabolism, small GTPase mediated signal transduction, morphogenesis of epithelium, and regulation of biological quality. These proteomic findings confirm pathways and gene families activated in tail regeneration in the green anole as well as identify uncharacterized proteins whose role in regrowth remains to be revealed. This study demonstrates the insights that are possible from the integration of proteomic and transcriptomic data in tail regrowth in the green anole, with potentially broader application to studies in other regenerative models.

2.
Database (Oxford) ; 20192019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31210271

RESUMO

High-throughput sequencing and proteomics technologies are markedly increasing the amount of RNA and peptide data that are available to researchers, which are typically made publicly available via data repositories such as the NCBI Sequence Read Archive and proteome archives, respectively. These data sets contain valuable information about when and where gene products are expressed, but this information is not readily obtainable from archived data sets. Here we report Chickspress (http://geneatlas.arl.arizona.edu), the first publicly available gene expression resource for chicken tissues. Since there is no single source of chicken gene models, Chickspress incorporates both NCBI and Ensembl gene models and links these gene sets with experimental gene expression data and QTL information. By linking gene models from both NCBI and Ensembl gene prediction pipelines, researchers can, for the first time, easily compare gene models from each of these prediction workflows to available experimental data for these products. We use Chickspress data to show the differences between these gene annotation pipelines. Chickspress also provides rapid search, visualization and download capacity for chicken gene sets based upon tissue type, developmental stage and experiment type. This first Chickspress release contains 161 gene expression data sets, including expression of mRNAs, miRNAs, proteins and peptides. We provide several examples demonstrating how researchers may use this resource.


Assuntos
Galinhas , Bases de Dados Genéticas , Regulação da Expressão Gênica , Transcriptoma , Animais , Proteínas Aviárias/biossíntese , Proteínas Aviárias/genética , Galinhas/genética , Galinhas/metabolismo , MicroRNAs/biossíntese , MicroRNAs/genética , Modelos Genéticos , Característica Quantitativa Herdável , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
3.
Mol Cell Endocrinol ; 473: 136-145, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29360563

RESUMO

Insulin secretion is stimulated by glucose metabolism and inhibited by catecholamines through adrenergic receptor stimulation. We determined whether catecholamines suppress oxidative metabolism in ß-cells through adrenergic receptors. In Min6 cells and isolated rat islets, epinephrine decreased oxygen consumption rates compared to vehicle control or co-administration of epinephrine with α2-adrenergic receptor antagonist yohimbine. Epinephrine also decreased forskolin-stimulated oxygen consumption rates, indicating cAMP dependent and independent actions. Furthermore, glucose oxidation rates were decreased with epinephrine, independent of the exocytosis of insulin, which was blocked with yohimbine. We evaluated metabolic targets through proteomic analysis after 4 h epinephrine exposure that revealed 466 differentially expressed proteins that were significantly enriched for processes including oxidative metabolism, protein turnover, exocytosis, and cell proliferation. These results demonstrate that acute α2-adrenergic stimulation suppresses glucose oxidation in ß-cells independent of nutrient availability and insulin exocytosis, while cAMP concentrations are elevated. Proteomics and immunoblots revealed changes in electron transport chain proteins that were correlated with lower metabolic reducing equivalents, intracellular ATP concentrations, and altered mitochondrial membrane potential implicating a new role for adrenergic control of mitochondrial function and ultimately insulin secretion.


Assuntos
Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Colforsina/farmacologia , Epinefrina/farmacologia , Glucose/metabolismo , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução , Consumo de Oxigênio/efeitos dos fármacos , Isoformas de Proteínas/metabolismo , Proteômica , Ratos Sprague-Dawley
4.
Transgenic Res ; 26(2): 171-186, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27771868

RESUMO

Oilseed crops are global commodities for their oil and protein seed content. We have engineered the oilseed Camelina sativa to exhibit increased protein content with a slight decrease in oil content. The introduction of a phytoene synthase gene with an RNAi cassette directed to suppress the storage protein 2S albumin resulted in seeds with an 11-24 % elevation in overall protein. The phytoene synthase cassette alone produced enhanced ß-carotene content of an average 275 ± 6.10 µg/g dry seed and an overall altered seed composition of 11 % less protein and comparable nontransgenic amounts of both oil and carbohydrates. Stacking an RNAi to suppress the major 2S storage protein resulted in seeds that contain elevated protein and slight decrease in oil and carbohydrate amounts showing that Camelina rebalances its proteome within an enlarged protein content genotype. In both ß-carotene enhanced seeds with/without RNAi2S suppression, the seed size was noticeably enlarged compared to nontransgenic counterpart seeds. Metabolic analysis of maturing seeds indicate that the enhanced ß-carotene trait had the larger effect than the RNAi2S suppression on the seed metabolome. The use of a GRAS (generally regarded as safe) ß-carotene as a visual marker in a floral dip transformation system, such as Camelina, might eliminate the need for costly regulatory and controversial antibiotic resistance markers. ß-carotene enhanced RNAi2S suppressed Camelina seeds could be further developed as a rapid heterologous protein production platform in a nonfood crop leveraging its enlarged protein content and visual marker.


Assuntos
Plantas Geneticamente Modificadas/genética , Proteoma/genética , Proteínas de Armazenamento de Sementes/genética , beta Caroteno/metabolismo , Brassicaceae/genética , Brassicaceae/crescimento & desenvolvimento , Ácidos Graxos/metabolismo , Genótipo , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , beta Caroteno/genética
5.
J Proteomics Bioinform ; 9(4): 107-119, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27274623

RESUMO

Listeria monocytogenes is a Gram-positive facultative anaerobe that is the causative agent of the disease listeriosis. The infectious ability of this bacterium is dependent upon resistance to stressors encountered within the gastrointestinal tract, including bile. Previous studies have indicated bile salt hydrolase activity increases under anaerobic conditions, suggesting anaerobic conditions influence stress responses. Therefore, the goal of this study was to determine if reduced oxygen availability increased bile resistance of L. monocytogenes. Four strains representing three serovars were evaluated for changes in viability and proteome expression following exposure to bile in aerobic or anaerobic conditions. Viability for F2365 (serovar 4b), EGD-e (serovar 1/2a), and 10403S (serovar 1/2a) increased following exposure to 10% porcine bile under anaerobic conditions (P < 0.05). However, HCC23 (serovar 4a) exhibited no difference (P > 0.05) in bile resistance between aerobic and anaerobic conditions, indicating that oxygen availability does not influence resistance in this strain. The proteomic analysis indicated F2365 and EGD-e had an increased expression of proteins associated with cell envelope and membrane bioenergetics under anaerobic conditions, including thioredoxin-disulfide reductase and cell division proteins. Interestingly, HCC23 had an increase in several dehydrogenases following exposure to bile under aerobic conditions, suggesting that the NADH:NAD+ is altered and may impact bile resistance. Variations were observed in the expression of the cell shape proteins between strains, which corresponded to morphological differences observed by scanning electron microscopy. These data indicate that oxygen availability influences bile resistance. Further research is needed to decipher how these changes in metabolism impact pathogenicity in vivo and also the impact that this has on susceptibility of a host to listeriosis.

6.
PLoS One ; 11(6): e0157034, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27314851

RESUMO

Necrotizing enterocolitis (NEC) is a devastating condition of premature infants that results from the gut microbiome invading immature intestinal tissues. This results in a life-threatening disease that is frequently treated with the surgical removal of diseased and dead tissues. Epidermal growth factor (EGF), typically found in bodily fluids, such as amniotic fluid, salvia and mother's breast milk, is an intestinotrophic growth factor and may reduce the onset of NEC in premature infants. We have produced human EGF in soybean seeds to levels biologically relevant and demonstrated its comparable activity to commercially available EGF. Transgenic soybean seeds expressing a seed-specific codon optimized gene encoding of the human EGF protein with an added ER signal tag at the N' terminal were produced. Seven independent lines were grown to homozygous and found to accumulate a range of 6.7 +/- 3.1 to 129.0 +/- 36.7 µg EGF/g of dry soybean seed. Proteomic and immunoblot analysis indicates that the inserted EGF is the same as the human EGF protein. Phosphorylation and immunohistochemical assays on the EGF receptor in HeLa cells indicate the EGF protein produced in soybean seed is bioactive and comparable to commercially available human EGF. This work demonstrates the feasibility of using soybean seeds as a biofactory to produce therapeutic agents in a soymilk delivery platform.


Assuntos
Enterocolite Necrosante/genética , Fator de Crescimento Epidérmico/biossíntese , Glycine max/genética , Plantas Geneticamente Modificadas/genética , Enterocolite Necrosante/patologia , Fator de Crescimento Epidérmico/administração & dosagem , Receptores ErbB/genética , Receptores ErbB/metabolismo , Microbioma Gastrointestinal/genética , Células HeLa , Humanos , Fosforilação , Sementes/genética
7.
Proteomes ; 4(1)2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-28248216

RESUMO

The distinct stages of cotton fiber development and maturation serve as a single-celled model for studying the molecular mechanisms of plant cell elongation, cell wall development and cellulose biosynthesis. However, this model system of plant cell development is compromised for proteomic studies due to a lack of an efficient protein extraction method during the later stages of fiber development, because of a recalcitrant cell wall and the presence of abundant phenolic compounds. Here, we compared the quality and quantities of proteins extracted from 25 dpa (days post anthesis) fiber with multiple protein extraction methods and present a comprehensive quantitative proteomic study of fiber development from 10 dpa to 25 dpa. Comparative analysis using a label-free quantification method revealed 287 differentially-expressed proteins in the 10 dpa to 25 dpa fiber developmental period. Proteins involved in cell wall metabolism and regulation, cytoskeleton development and carbohydrate metabolism among other functional categories in four fiber developmental stages were identified. Our studies provide protocols for protein extraction from maturing fiber tissues for mass spectrometry analysis and expand knowledge of the proteomic profile of cotton fiber development.

8.
BMC Genomics ; 16: 587, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26251320

RESUMO

BACKGROUND: A systems toxicology investigation comparing and integrating transcriptomic and proteomic results was conducted to develop holistic effects characterizations for the wildlife bird model, Northern bobwhite (Colinus virginianus) dosed with the explosives degradation product 2-amino-4,6-dinitrotoluene (2A-DNT). A subchronic 60 d toxicology bioassay was leveraged where both sexes were dosed via daily gavage with 0, 3, 14, or 30 mg/kg-d 2A-DNT. Effects on global transcript expression were investigated in liver and kidney tissue using custom microarrays for C. virginianus in both sexes at all doses, while effects on proteome expression were investigated in liver for both sexes and kidney in males, at 30 mg/kg-d. RESULTS: As expected, transcript expression was not directly indicative of protein expression in response to 2A-DNT. However, a high degree of correspondence was observed among gene and protein expression when investigating higher-order functional responses including statistically enriched gene networks and canonical pathways, especially when connected to toxicological outcomes of 2A-DNT exposure. Analysis of networks statistically enriched for both transcripts and proteins demonstrated common responses including inhibition of programmed cell death and arrest of cell cycle in liver tissues at 2A-DNT doses that caused liver necrosis and death in females. Additionally, both transcript and protein expression in liver tissue was indicative of induced phase I and II xenobiotic metabolism potentially as a mechanism to detoxify and excrete 2A-DNT. Nuclear signaling assays, transcript expression and protein expression each implicated peroxisome proliferator-activated receptor (PPAR) nuclear signaling as a primary molecular target in the 2A-DNT exposure with significant downstream enrichment of PPAR-regulated pathways including lipid metabolic pathways and gluconeogenesis suggesting impaired bioenergetic potential. CONCLUSION: Although the differential expression of transcripts and proteins was largely unique, the consensus of functional pathways and gene networks enriched among transcriptomic and proteomic datasets provided the identification of many critical metabolic functions underlying 2A-DNT toxicity as well as impaired PPAR signaling, a key molecular initiating event known to be affected in di- and trinitrotoluene exposures.


Assuntos
Compostos de Anilina/toxicidade , Colinus/metabolismo , Fígado/efeitos dos fármacos , Animais , Bioensaio/métodos , Relação Dose-Resposta a Droga , Substâncias Explosivas/toxicidade , Feminino , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/metabolismo , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Proteoma/metabolismo , Proteômica/métodos
9.
Plant Biotechnol J ; 13(4): 590-600, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25400247

RESUMO

Transgenic soya bean (Glycine max) plants overexpressing a seed-specific bacterial phytoene synthase gene from Pantoea ananatis modified to target to plastids accumulated 845 µg ß carotene g(-1) dry seed weight with a desirable 12:1 ratio of ß to α. The ß carotene accumulating seeds exhibited a shift in oil composition increasing oleic acid with a concomitant decrease in linoleic acid and an increase in seed protein content by at least 4% (w/w). Elevated ß-carotene accumulating soya bean cotyledons contain 40% the amount of abscisic acid compared to nontransgenic cotyledons. Proteomic and nontargeted metabolomic analysis of the mid-maturation ß-carotene cotyledons compared to the nontransgenic did not reveal any significant differences that would account for the altered phenotypes of both elevated oleate and protein content. Transcriptomic analysis, confirmed by RT-PCR, revealed a number of significant differences in ABA-responsive transcripton factor gene expression in the crtB transgenics compared to nontransgenic cotyledons of the same maturation stage. The altered seed composition traits seem to be attributed to altered ABA hormone levels varying transcription factor expression. The elevated ß-carotene, oleic acid and protein traits in the ß-carotene soya beans confer a substantial additive nutritional quality to soya beans.


Assuntos
Glycine max/metabolismo , Ácido Oleico/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , beta Caroteno/metabolismo , Ácido Abscísico/metabolismo , Carotenoides/biossíntese , Ácidos Graxos Dessaturases/genética , Perfilação da Expressão Gênica , Plantas Geneticamente Modificadas , Glycine max/embriologia , Glycine max/genética
10.
BMC Genomics ; 15: 576, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-25005615

RESUMO

BACKGROUND: Mycoplasma hyopneumoniae causes respiratory disease in swine and contributes to the porcine respiratory disease complex, a major disease problem in the swine industry. The M. hyopneumoniae strain 232 genome is one of the smallest and best annotated microbial genomes, containing only 728 annotated genes and 691 known proteins. Standard protein databases for mass spectrometry only allow for the identification of known and predicted proteins, which if incorrect can limit our understanding of the biological processes at work. Proteogenomic mapping is a methodology which allows the entire 6-frame genome translation of an organism to be used as a mass spectrometry database to help identify unknown proteins as well as correct and confirm existing annotations. This methodology will be employed to perform an in-depth analysis of the M. hyopneumoniae proteome. RESULTS: Proteomic analysis indicates 483 of 691 (70%) known M. hyopneumoniae strain 232 proteins are expressed under the culture conditions given in this study. Furthermore, 171 of 328 (52%) hypothetical proteins have been confirmed. Proteogenomic mapping resulted in the identification of previously unannotated genes gatC and rpmF and 5-prime extensions to genes mhp063, mhp073, and mhp451, all conserved and annotated in other M. hyopneumoniae strains and Mycoplasma species. Gene prediction with Prodigal, a prokaryotic gene predicting program, completely supports the new genomic coordinates calculated using proteogenomic mapping. CONCLUSIONS: Proteogenomic mapping showed that the protein coding genes of the M. hyopneumoniae strain 232 identified in this study are well annotated. Only 1.8% of mapped peptides did not correspond to genes defined by the current genome annotation. This study also illustrates how proteogenomic mapping can be an important tool to help confirm, correct and append known gene models when using a genome sequence as search space for peptide mass spectra. Using a gene prediction program which scans for a wide variety of promoters can help ensure genes are accurately predicted or not missed completely. Furthermore, protein extraction using differential detergent fractionation effectively increases the number of membrane and cytoplasmic proteins identifiable my mass spectrometry.


Assuntos
Proteínas de Bactérias/genética , Mycoplasma hyopneumoniae/genética , Proteoma/genética , Mapeamento Cromossômico , Ontologia Genética , Genoma Bacteriano , Fases de Leitura Aberta , Espectrometria de Massas em Tandem , Virulência
11.
J Proteome Res ; 13(4): 1896-904, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24564473

RESUMO

Listeria monocytogenes is a Gram-positive, foodborne pathogen responsible for approximately 28% of all food-related deaths each year in the United States. L. monocytogenes infections are linked to the consumption of minimally processed ready-to-eat (RTE) products such as cheese, deli meats, and cold-smoked finfish products. L. monocytogenes is resistant to stresses commonly encountered in the food-processing environment, including low pH, high salinity, oxygen content, and various temperatures. The purpose of this study was to determine if cells habituated at low temperatures would result in cross-protective effects against osmotic stress. We found that cells exposed to refrigerated temperatures prior to a mild salt stress treatment had increased survival in NaCl concentrations of 3%. Additionally, the longer the cells were pre-exposed to cold temperatures, the greater the increase in survival in 3% NaCl. A proteomics analysis was performed in triplicate in order to elucidate mechanisms involved in cold-stress induced cross protection against osmotic stress. Proteins involved in maintenance of the cell wall and cellular processes, such as penicillin binding proteins and osmolyte transporters, and processes involving amino acid metabolism, such as osmolyte synthesis, transport, and lipid biosynthesis, had the greatest increase in expression when cells were exposed to cold temperatures prior to salt. By gaining a better understanding of how this pathogen adapts physiologically to various environmental conditions, improvements can be made in detection and mitigation strategies.


Assuntos
Proteínas de Bactérias/análise , Listeria monocytogenes/fisiologia , Pressão Osmótica/fisiologia , Proteoma/análise , Estresse Fisiológico/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Temperatura Baixa , Listeria monocytogenes/química , Listeria monocytogenes/metabolismo , Redes e Vias Metabólicas , Proteoma/química , Proteoma/metabolismo , Proteômica , Cloreto de Sódio
12.
Vet Med (Auckl) ; 5: 1-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-32670841

RESUMO

During platelet development, proteins necessary for the many functional roles of the platelet are stored within cytoplasmic granules. Platelets have also been shown to take up and store many plasma proteins into granules. This makes the platelet a potential novel source of biomarkers for many disease states. Approaches to sample preparation for proteomic studies for biomarkers search vary. Compared with traditional two-dimensional polyacrylamide gel electrophoresis systems, nonelectrophoretic proteomics methods that employ offline protein fractionation methods such as the differential detergent fractionation method have clear advantages. Here we report a proteomic survey of the canine platelet proteome using differential detergent fractionation coupled with mass spectrometry and functional modeling of the canine platelet proteins identified. A total of 5,974 unique proteins were identified from platelets, of which only 298 (5%) had previous experimental evidence of in vivo expression. The use of offline prefractionation of canine proteins by differential detergent fractionation resulted in greater proteome coverage as compared with previous reports. This initial study contributes to a broader understanding of canine platelet biology and aids functional research, identification of potential treatment targets and biomarkers, and sets a new standard for the resting platelet proteome.

13.
PLoS One ; 8(9): e73032, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24058457

RESUMO

As the use of laparoscopic surgery has become more widespread in recent years, the need has increased for minimally-invasive surgical devices that effectively cut and coagulate tissue with reduced tissue trauma. Although electrosurgery (ES) has been used for many generations, newly-developed ultrasonic devices (HARMONIC® Blade, HB) have been shown at a macroscopic level to offer better coagulation with less thermally-induced tissue damage. We sought to understand the differences between ES and HB at a microscopic level by comparing mRNA transcript and protein responses at the 3-day timepoint to incisions made by the devices in subcutaneous fat tissue in a porcine model. Samples were also assessed via histological examination. ES-incised tissue had more than twice as many differentially-expressed genes as HB (2,548 vs 1,264 respectively), and more differentially-expressed proteins (508 vs 432) compared to control (untreated) tissue. Evaluation of molecular functions using Gene Ontology showed that gene expression changes for the energized devices reflected the start of wound healing, including immune response and inflammation, while protein expression showed a slightly earlier stage, with some remnants of hemostasis. For both transcripts and proteins, ES exhibited a greater response than HB, especially in inflammatory mediators. These findings were in qualitative agreement with histological results. This study has shown that transcriptomics and proteomics can monitor the wound healing response following surgery and can differentiate between surgical devices. In agreement with clinical observations, electrosurgery was shown to incur a greater inflammatory immune response than an ultrasonic device during initial iatrogenic wound healing.


Assuntos
Laparoscopia/métodos , RNA Mensageiro/genética , Gordura Subcutânea/metabolismo , Transcriptoma , Procedimentos Cirúrgicos Ultrassônicos/métodos , Animais , Citocinas/genética , Citocinas/imunologia , Eletrocirurgia , Feminino , Perfilação da Expressão Gênica , Hemostasia/genética , Hemostasia/imunologia , Laparoscopia/instrumentação , Anotação de Sequência Molecular , RNA Mensageiro/imunologia , Gordura Subcutânea/imunologia , Gordura Subcutânea/cirurgia , Suínos , Procedimentos Cirúrgicos Ultrassônicos/instrumentação , Cicatrização/genética , Cicatrização/imunologia
14.
Proteome Sci ; 11(1): 26, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23777608

RESUMO

Plant cells are routinely exposed to various pathogens and environmental stresses that cause cell wall perturbations. Little is known of the mechanisms that plant cells use to sense these disturbances and transduce corresponding signals to regulate cellular responses to maintain cell wall integrity. Previous studies in rice have shown that removal of the cell wall leads to substantial chromatin reorganization and histone modification changes concomitant with cell wall re-synthesis. But the genes and proteins that regulate these cellular responses are still largely unknown. Here we present an examination of the nuclear proteome differential expression in response to removal of the cell wall in rice suspension cells using multiple nuclear proteome extraction methods. A total of 382 nuclear proteins were identified with two or more peptides, including 26 transcription factors. Upon removal of the cell wall, 142 nuclear proteins were up regulated and 112 were down regulated. The differentially expressed proteins included transcription factors, histones, histone domain containing proteins, and histone modification enzymes. Gene ontology analysis of the differentially expressed proteins indicates that chromatin & nucleosome assembly, protein-DNA complex assembly, and DNA packaging are tightly associated with cell wall removal. Our results indicate that removal of the cell wall imposes a tremendous challenge to the cells. Consequently, plant cells respond to the removal of the cell wall in the nucleus at every level of the regulatory hierarchy.

15.
J Med Microbiol ; 62(Pt 1): 25-35, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22977076

RESUMO

Listeria monocytogenes is a food-borne pathogen responsible for the disease listeriosis. The infectious process depends on survival in the high bile-salt conditions encountered throughout the gastrointestinal tract, including the gallbladder. However, it is not clear how bile-salt resistance mechanisms are induced, especially under physiologically relevant conditions. This study sought to determine how the L. monocytogenes strains EGDe (serovar 1/2a), F2365 (serovar 4a) and HCC23 (serovar 4b) respond to bile salts under anaerobic conditions. Changes in the expressed proteome were analysed using multidimensional protein identification technology coupled with electrospray ionization tandem mass spectrometry. In general, the response to bile salts among the strains tested involved significant alterations in the presence of cell-wall-associated proteins, DNA repair proteins, protein folding chaperones and oxidative stress-response proteins. Strain viability correlated with an initial osmotic stress response, yet continued survival for EGDe and F2365 involved different mechanisms. Specifically, proteins associated with biofilm formation in EGDe and transmembrane efflux pumps in F2365 were expressed, suggesting that variations exist in how virulent strains respond and adapt to high bile-salt environments. These results indicate that the bile-salt response varies among these serovars and that further research is needed to elucidate how the response to bile salts correlates with colonization potential in vivo.


Assuntos
Ácidos e Sais Biliares/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/metabolismo , Proteômica , Anaerobiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Reparo do DNA/genética , Reparo do DNA/fisiologia , DNA Bacteriano , Concentração de Íons de Hidrogênio , Listeria monocytogenes/classificação , Viabilidade Microbiana , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Espectrometria de Massas por Ionização por Electrospray , Estresse Fisiológico
16.
BMC Syst Biol ; 6: 123, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22979947

RESUMO

BACKGROUND: Marek's Disease (MD) is a hyperproliferative, lymphomatous, neoplastic disease of chickens caused by the oncogenic Gallid herpesvirus type 2 (GaHV-2; MDV). Like several human lymphomas the neoplastic MD lymphoma cells overexpress the CD30 antigen (CD30(hi)) and are in minority, while the non-neoplastic cells (CD30(lo)) form the majority of population. MD is a unique natural in-vivo model of human CD30(hi) lymphomas with both natural CD30(hi) lymphomagenesis and spontaneous regression. The exact mechanism of neoplastic transformation from CD30(lo) expressing phenotype to CD30(hi) expressing neoplastic phenotype is unknown. Here, using microarray, proteomics and Systems Biology modeling; we compare the global gene expression of CD30(lo) and CD30(hi) cells to identify key pathways of neoplastic transformation. We propose and test a specific mechanism of neoplastic transformation, and genetic resistance, involving the MDV oncogene Meq, host gene products of the Nuclear Factor Kappa B (NF-κB) family and CD30; we also identify a novel Meq protein interactome. RESULTS: Our results show that a) CD30(lo) lymphocytes are pre-neoplastic precursors and not merely reactive lymphocytes; b) multiple transformation mechanisms exist and are potentially controlled by Meq; c) Meq can drive a feed-forward cycle that induces CD30 transcription, increases CD30 signaling which activates NF-κB, and, in turn, increases Meq transcription; d) Meq transcriptional repression or activation of the CD30 promoter generally correlates with polymorphisms in the CD30 promoter distinguishing MD-lymphoma resistant and susceptible chicken genotypes e) MDV oncoprotein Meq interacts with proteins involved in physiological processes central to lymphomagenesis. CONCLUSIONS: In the context of the MD lymphoma microenvironment (and potentially in other CD30(hi) lymphomas as well), our results show that the neoplastic transformation is a continuum and the non-neoplastic cells are actually pre-neoplastic precursor cells and not merely immune bystanders. We also show that NF-κB is a central player in MDV induced neoplastic transformation of CD30-expressing lymphocytes in vivo. Our results provide insights into molecular mechanisms of neoplastic transformation in MD specifically and also herpesvirus induced lymphoma in general.


Assuntos
Transformação Celular Viral , Regulação Neoplásica da Expressão Gênica , Herpesvirus Galináceo 2/fisiologia , Antígeno Ki-1/genética , Linfócitos/metabolismo , Doença de Marek/virologia , NF-kappa B/metabolismo , Animais , Linhagem Celular , Galinhas , Suscetibilidade a Doenças , Genótipo , Herpesvirus Galináceo 2/metabolismo , Humanos , Linfócitos/patologia , Linfócitos/virologia , Linfoma/patologia , Proteínas Oncogênicas Virais/metabolismo , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas/metabolismo , Ativação Transcricional , Microambiente Tumoral/genética
17.
Proteomics ; 11(21): 4262-5, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21834139

RESUMO

This study is the first proteomics analysis of the muscularis complexus (pipping muscle) in chicken (Gallus gallus) broiler embryos. We used differential detergent fractionation and nano-HPLC-MS/MS analysis to identify 676 proteins from all cellular components. The identified proteins were functionally classified in accordance with their involvement in various cellular activities.


Assuntos
Embrião de Galinha/química , Proteínas Musculares/análise , Músculos/química , Proteoma/análise , Animais , Embrião de Galinha/citologia , Galinhas/metabolismo , Cromatografia Líquida de Alta Pressão , Proteômica , Espectrometria de Massas em Tandem
18.
PLoS One ; 6(2): e17111, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21386900

RESUMO

Oligotropha carboxidovorans OM5 T. (DSM 1227, ATCC 49405) is a chemolithoautotrophic bacterium able to utilize CO and H(2) to derive energy for fixation of CO(2). Thus, it is capable of growth using syngas, which is a mixture of varying amounts of CO and H(2) generated by organic waste gasification. O. carboxidovorans is capable also of heterotrophic growth in standard bacteriologic media. Here we characterize how the O. carboxidovorans proteome adapts to different lifestyles of chemolithoautotrophy and heterotrophy. Fatty acid methyl ester (FAME) analysis of O. carboxidovorans grown with acetate or with syngas showed that the bacterium changes membrane fatty acid composition. Quantitative shotgun proteomic analysis of O. carboxidovorans grown in the presence of acetate and syngas showed production of proteins encoded on the megaplasmid for assimilating CO and H(2) as well as proteins encoded on the chromosome that might have contributed to fatty acid and acetate metabolism. We found that adaptation to chemolithoautotrophic growth involved adaptations in cell envelope, oxidative homeostasis, and metabolic pathways such as glyoxylate shunt and amino acid/cofactor biosynthetic enzymes.


Assuntos
Bradyrhizobiaceae/crescimento & desenvolvimento , Crescimento Quimioautotrófico/fisiologia , Ácidos Graxos/análise , Processos Heterotróficos/fisiologia , Proteoma/análise , Proteínas de Bactérias/análise , Bradyrhizobiaceae/enzimologia , Bradyrhizobiaceae/genética , Bradyrhizobiaceae/metabolismo , Análise por Conglomerados , Redes Reguladoras de Genes/fisiologia , Genes Bacterianos , Glioxilatos/metabolismo , Lipídeos de Membrana/análise , Redes e Vias Metabólicas/genética , Oxirredução
19.
Microbiology (Reading) ; 157(Pt 2): 504-515, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20966092

RESUMO

Polyamines such as cadaverine, putrescine and spermidine are polycationic molecules that have pleiotropic effects on cells via their interaction with nucleic acids. Streptococcus pneumoniae (the pneumococcus) is a Gram-positive pathogen capable of causing pneumonia, septicaemia, otitis media and meningitis. Pneumococci have a polyamine transport operon (potABCD) responsible for the binding and transport of putrescine and spermidine, and can synthesize cadaverine and spermidine using their lysine decarboxylase (cad) and spermidine synthase (speE) enzymes. Previous studies from our laboratory have shown that an increase in PotD expression is seen following exposure to various stresses, while during infection, potD inactivation significantly attenuates pneumococcal virulence, and anti-PotD immune responses are protective in mice. In spite of their relative importance, not much is known about the global contribution of polyamine biosynthesis and transport pathways to pneumococcal disease. Mutants deficient in polyamine biosynthesis (ΔspeE or Δcad) or transport genes (ΔpotABCD) were constructed and were found to be attenuated in murine models of pneumococcal colonization and pneumonia, either alone or in competition with the wild-type strain. The ΔspeE mutant was also attenuated during invasive disease, while the potABCD and cad genes seemed to be dispensable. HPLC analyses showed reduced intracellular polyamine levels in all mutant strains compared with wild-type bacteria. High-throughput proteomic analyses indicated reduced expression of growth, replication and virulence factors in mutant strains. Thus, polyamine biosynthesis and transport mechanisms are intricately linked to the fitness, survival and pathogenesis of the pneumococcus in host microenvironments, and may represent important targets for prophylactic and therapeutic interventions.


Assuntos
Pneumonia Pneumocócica/microbiologia , Poliaminas/metabolismo , Streptococcus pneumoniae/metabolismo , Ácidos/farmacologia , Sequência de Aminoácidos , Animais , Transporte Biológico , DNA Bacteriano/genética , Camundongos , Camundongos Endogâmicos CBA , Dados de Sequência Molecular , Mutação , Estresse Oxidativo , Proteoma/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pneumoniae/patogenicidade , Virulência
20.
BMC Bioinformatics ; 10 Suppl 11: S17, 2009 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-19811682

RESUMO

BACKGROUND: Mass spectrometry-based protein identification methods are fundamental to proteomics. Biological experiments are usually performed in replicates and proteomic analyses generate huge datasets which need to be integrated and quantitatively analyzed. The Sequest search algorithm is a commonly used algorithm for identifying peptides and proteins from two dimensional liquid chromatography electrospray ionization tandem mass spectrometry (2-D LC ESI MS(2)) data. A number of proteomic pipelines that facilitate high throughput 'post data acquisition analysis' are described in the literature. However, these pipelines need to be updated to accommodate the rapidly evolving data analysis methods. Here, we describe a proteomic data analysis pipeline that specifically addresses two main issues pertinent to protein identification and differential expression analysis: 1) estimation of the probability of peptide and protein identifications and 2) non-parametric statistics for protein differential expression analysis. Our proteomic analysis workflow analyzes replicate datasets from a single experimental paradigm to generate a list of identified proteins with their probabilities and significant changes in protein expression using parametric and non-parametric statistics. RESULTS: The input for our workflow is Bioworks 3.2 Sequest (or a later version, including cluster) output in XML format. We use a decoy database approach to assign probability to peptide identifications. The user has the option to select "quality thresholds" on peptide identifications based on the P value. We also estimate probability for protein identification. Proteins identified with peptides at a user-specified threshold value from biological experiments are grouped as either control or treatment for further analysis in ProtQuant. ProtQuant utilizes a parametric (ANOVA) method, for calculating differences in protein expression based on the quantitative measure SigmaXcorr. Alternatively ProtQuant output can be further processed using non-parametric Monte-Carlo resampling statistics to calculate P values for differential expression. Correction for multiple testing of ANOVA and resampling P values is done using Benjamini and Hochberg's method. The results of these statistical analyses are then combined into a single output file containing a comprehensive protein list with probabilities and differential expression analysis, associated P values, and resampling statistics. CONCLUSION: For biologists carrying out proteomics by mass spectrometry, our workflow facilitates automated, easy to use analyses of Bioworks (3.2 or later versions) data. All the methods used in the workflow are peer-reviewed and as such the results of our workflow are compliant with proteomic data submission guidelines to public proteomic data repositories including PRIDE. Our workflow is a necessary intermediate step that is required to link proteomics data to biological knowledge for generating testable hypotheses.


Assuntos
Espectrometria de Massas/métodos , Proteínas/química , Proteômica/métodos , Bases de Dados de Proteínas , Software , Estatística como Assunto , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA