Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Chem Asian J ; : e202400269, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619083

RESUMO

Described is a new synthetic route to bis(2-hydroxy-3,5-di-t-butylphenyl)methanone and its derivatives. The combined esterification/photo-Fries rearrangement approach enables a modular preparation of keto-bridged polyphenols. This protecting group-free process is highly atom- and step-economic, and a scalable production was easily achieved in the continuous-flow mode.

2.
J Control Release ; 354: 417-428, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36627025

RESUMO

Fibrosis is an excessive accumulation of extracellular matrix (ECM) that may cause severe organ dysfunction. Nitric oxide (NO), a multifunctional gaseous signaling molecule, may inhibit fibrosis, and delivery of NO may serve as a potential antifibrotic strategy. However, major limitations in the application of NO to treat fibrotic diseases include its nonspecificity, short half-life and low availability in fibrotic tissue. Herein, we aimed to develop a stimuli-responsive drug carrier to deliver NO to halt kidney fibrosis. We manufactured a nanoparticle (NP) composed of pH-sensitive poly[2-(diisopropylamino)ethyl methacrylate (PDPA) polymers to encapsulate a NO donor, a dinitrosyl iron complex (DNIC; [Fe2(µ-SEt)2(NO)4]). The NPs were stable at physiological pH 7.4 but disintegrated at pH 4.0-6.0. The NPs showed significant cytotoxicity to cultured human myofibroblasts and were able to inhibit the activation of myofibroblasts, as indicated by a lower expression level of α-smooth muscle actin and the synthesis of a major ECM component, collagen I, in cultured human myofibroblasts. When given to mice treated with unilateral ureteral ligation/obstruction (UUO) to induce kidney fibrosis, these NPs remained in blood at a stable concentration for as long as 24 h and might enter the fibrotic kidneys to suppress myofibroblast activation and collagen I production, leading to a 70% reduction in the fibrotic area. In summary, our strategy to assemble a NO donor, the iron nitrosyl complex DNIC, into pH-responsive NPs proves effective in treating renal fibrosis and warrants further investigation for its therapeutic potential.


Assuntos
Nefropatias , Obstrução Ureteral , Camundongos , Humanos , Animais , Rim , Óxido Nítrico/metabolismo , Nefropatias/tratamento farmacológico , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Colágeno Tipo I/metabolismo , Fibrose , Concentração de Íons de Hidrogênio , Camundongos Endogâmicos C57BL
3.
Chem Rec ; 21(12): 3628-3647, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34132014

RESUMO

Cobalt complexes have played an essential role in different chemical reactions. One of them that has attracted substantial attention in polymer science is cobalt mediated radical polymerization (CMRP), which is famous for its remarkable efficiency in controlling the radical polymerization of vinyl acetate (VAc) and other less active monomers (LAMs). Two pathways, reversible termination (RT) and degenerative transfer (DT), were recognized to control the polymerization in CMRP and could be further used to rationalize the mechanism of other RDRP methods. These control mechanisms were then found to be correlated to the redox potential of cobalt complexes and thus could be judged more quantitatively. The control of polymer composition and tacticity could also be achieved by using CMRP. The hybridization of CMRP and atom transfer radical polymerization (ATRP) could directly synthesize the vinyl acetate/methyl methacrylate and vinyl acetate/styrene block copolymers in one pot. The copolymer of acrylates and 1-octene could be obtained by visible-light-induced CMRP. With the addition of bulky Lewis acid, CMRP of N,N-dimethylacrylamide (DMA) showed high isotacticities with the contents of meso dyads (m) and meso triads (mm) up to 94 % and 87 %, respectively, and generated the crystalline PDMA with Tm as high as 276 °C. This personal account reviewed the development of CMRP with the mechanistic understanding, the control of composition and stereoselectivity of the polymeric products, and its perspective.

4.
Chem Sci ; 11(27): 7003-7008, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-33033604

RESUMO

The organization states of functional molecules have a significant impact on the properties of materials. A variety of approaches have been studied to obtain well-organized molecular assemblies. The present work shows a new non-organized state of isolated and dispersed functional molecules in amorphous flexible covalent organic networks. Redox-active quinone molecules are embedded in the amorphous network polymers. Consecutive reactions between benzoquinone (BQ) and linker molecules generate random network structures through polymerization at different rates and in multiple directions. The low-crystalline stackings of the amorphous network polymers facilitate the formation of nanoflakes through exfoliation in dispersion media. Enhanced electrochemical performances, one of the highest specific capacities in recent studies, were achieved by efficient redox reactions of the quinone moiety. The present noncrystalline approach, low-crystalline stacking of designer amorphous covalent organic networks, can be applied to construct similar nanostructured polymer materials containing functional units.

5.
Org Biomol Chem ; 18(33): 6509-6513, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32797130

RESUMO

We report the one-step synthesis of diversely substituted functional 1,2-dithiolanes by reacting readily accessible 1,3-bis-tert-butyl thioethers with bromine. The reaction proceeds to completion within minutes under mild conditions, presumably via a sulfonium-mediated ring closure. Using X-ray crystallography and UV-vis spectroscopy, we demonstrate how substituent size and ring substitution pattern can affect the geometry and photophysical properties of 1,2-dithiolanes.

6.
ACS Macro Lett ; 9(10): 1423-1428, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35653657

RESUMO

The AlIII(tralen)Cl complex (tralenH2 = N,N'-di(cyclohepta-2,4,6-trien-1-one-2-yl)-1,2-diaminobenzene) has been synthesized and applied to mediate the reversible-deactivation radical polymerization (RDRP) of vinyl monomers. The polymerization of unconjugated monomers such as vinyl acetate (VAc) and N-vinylpyrrolidone (NVP) with AlIII(tralen)Cl showed the living characters of linearly increased molecular weight with conversion and formation of block copolymer. However, the control manners in the polymerization of conjugated monomers like acrylates and styrene were limited. The electron paramagnetic resonance (EPR) spectrum indicated that AlIII(tralen)BArF (BArF = tetrakis(3,5-trifluormethylphenyl)borate) and propagating radicals formed a paramagnetic dormant species, possibly PVAc-AlIII(tralen)BArF, via the single-electron transfer to the tralen ligand.

7.
Chem Commun (Camb) ; 55(78): 11723-11726, 2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31512688

RESUMO

A phase-segregated composite of polystyrene (PSt) and layered polydiacetylene (PDA) was formed through simultaneous polymerization and crystallization. As the motion of PSt chains with glass transition is transferred to that of PDA, the color change was achieved by the shortening of the conjugation length with deformation of the layered structure.

8.
Chem Sci ; 10(1): 284-292, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30713638

RESUMO

Triblock copolymer of poly(ethylene glycol)-b-poly(2-dimethylaminoethyl methacrylate)-b-poly(pyrenylmethyl methacrylate) (PEG-b-PDMAEMA-b-PPy) has been developed for use as an ideal gene delivery system, which showed both high stability under physiological conditions and efficient gene release in a mimetic cancer environment. The siRNA release from this system without external stimulation was 16% in 1 h and then remained steady. However, the photo-triggered siRNA release was 78% within 1 h and was higher than 91% after 24 h. The remarkable contrast between the stability and release efficiency of these siRNA-condensed micelleplexes before and after photo-irradiation has been rationalized by the light- and pH-induced structural transitions of the triblock copolymer micelles. The negligible cytotoxicity, high cellular uptake efficiency, and remarkable knockdown efficiency shown in in vitro tests further revealed the promising potential of these triblock copolymer micelleplexes for use in stimuli-responsive gene therapy.

9.
Nanoscale ; 10(7): 3509-3517, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29405221

RESUMO

A low generation amphiphilic dendrimer, POSS-AD, which has a POSS core and eight amphiphilic arms, was synthesized and used as a nano-reactor to produce well-defined polymer nano-cylinders. Confirmed by small-angle X-ray scattering (SAXS), Raman and NMR spectrometry, monodispersed cylindrical micelles that contain a hydrophilic cavity with a diameter of 2.09 nm and a length of 4.26 nm were produced via co-assembling POSS-AD with hydrophilic liquids, such as H2O and HEMA in hydrophobic solvents. Taking the HEMA/POSS-AD cylindrical micelles as nano-reactors, polymerization of HEMA within the micelles results in polymer nano-cylinders (POSS-ADNPs) with a diameter of 2.24 nm and a length of 5.02 nm. The study confirmed that despite the inability to maintain specific shape in solution, low generation dendrimers form well-defined nano-containers or nano-reactors, which relies on co-assembling with hydrophilic guest molecules. These nano-reactors are robust enough to maintain their shape during the polymerization of the guest molecules. Polymer nano-cylinders with dimensions less than 10 nm can thus be produced from the HEMA/POSS-AD micelles. Since the chemical structure of low-generation dendrimers and the contents of the co-assembled nano-reactors can be easily adjusted, the concept holds the potential for the further developments of low-generation amphiphilic dendrimers.

10.
Chemistry ; 23(55): 13583-13586, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28796921

RESUMO

In this study, α-TiP layered structure incorporating a heterometal center for organic ligand binding to enhance structural complexity and functionality were prepared. The protons of the α-TiP layer were replaced with zinc ions coordinated by 4-pyridinecarboxylic acid (PCA) and water to form a layer structure, TiZn(PO4 )2 (H2 O)(PCA) (1). The tetrahedral zinc center with coordinated water in 1 is unprecedented in zincophosphate or zinc-MOF systems and is usually only found in metalloenzyme systems. The neutral zincotitanophosphate layers, tightly stacked through hydrogen bonds, showed velcro-like behavior on intercalating 4,4'-trimethylenedipyridine (TMDP) reversibly. It rendered a remarkable luminescence property to 1, emitting blue-to-white light under UV excitation. Surprisingly, the replacement of TMDP for PCA in the hydrothermal synthesis still resulted in 1, plus another structure, Ti4 Zn2 (H2 TPB)(PO4 )4 (HPO4 )4 (H2 PO4 )2 (2) (TPB=1,2,4,5-tetra(4-pyridyl)benzene). Clearly, in situ C-C cracking and C-C coupling of TMDP simultaneously occurred to generate PCA and TPB and thereafter the oxidant, Zn(NO3 )2 , was quantitatively determined to isolate crystal 1 from 2. The structure of 2 also featured α-TiP layers with pedant Zn tetrahedra but formed a three-dimensional neutral framework through TPB. For the first time, α-TiP-derived structures and their properties have been elucidated, which help in understanding intriguing in situ ligand formation and intercalation-induced luminescence, to exploit potential photocatalysis in polymerization.

11.
Macromol Rapid Commun ; 37(24): 2037-2044, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27859816

RESUMO

To manipulate the functions of nanomaterials more precisely for diverse applications, the controllability and critical influencing factors of their properties must be thoroughly investigated. In this work, the macroscopic and microscopic effects are studied on the photophysical properties of various pyrene-ended poly(styrene-block-methyl methacrylate) nanostructures. Fluorescent polymer nanospheres, nanorods, and nanotubes are prepared by different template-based methods using anodic aluminum oxide membranes. Chain arrangements and conformations are determined as the key factors affecting the photophysical properties of the fluorescent polymer nanostructures. This work not only gives a deeper understanding of the effects on the photophysical properties of polymer nanomaterials influenced by morphologies, chain arrangements, and chain conformations, but also provides a reference for designing proper fluorescent nanostructures for specific applications.


Assuntos
Óxido de Alumínio/química , Corantes Fluorescentes/química , Membranas Artificiais , Nanopartículas/química , Polimetil Metacrilato/química , Poliestirenos/química
12.
Macromol Rapid Commun ; 36(5): 439-46, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25619744

RESUMO

Multi-component polymer nanomaterials have attracted great attention because of their applications in areas such as biomedicine, tissue engineering, and organic solar cells. The precise control over the morphologies of multi-component polymer nanomaterials, however, is still a great challenge. In this work, the fabrication of poly(methyl methacrylate)(PMMA)/poly-styrene (PS) nanostructures that contain PMMA shells and encapsulated PS nanospheres is studied. The nanostructures are prepared using a triple solution wetting method with anodic aluminum oxide (AAO) templates. The nanopores of the templates are wetted sequentially by PS solutions in dimethylformamide (DMF), PMMA solutions in acetic acid, and water. The compositions and morphologies of the nanostructures are controlled by the interactions between the polymers, solvents, and AAO walls. This work not only presents a feasible method to prepare multi-component polymer nanomaterials, but also leads to a better understanding of polymer-solvent interactions in confined geometries.


Assuntos
Óxido de Alumínio/química , Nanoporos , Nanoestruturas/química , Polímeros/química , Polimetil Metacrilato/química , Poliestirenos/química , Solventes/química , Eletrodos , Molhabilidade
13.
Chem Sci ; 6(5): 2979-2988, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29308172

RESUMO

The control of the polymerization of a wide range of monomers under mild conditions by a single catalyst remains a major challenge in polymer science. We report a versatile, well-defined organocobalt salen complex to control living radical polymerization of different categories of monomers, including acrylates, acrylamides and vinyl acetate, under visible light irradiation at ambient temperature. Both household light and sunlight were effectively applied in the synthesis of polymers with controlled molecular weights and narrow polydispersities. Narrowly dispersed block copolymers (Mw/Mn < 1.2) were obtained under various conditions. The structures of the polymers were analyzed by 1H NMR, 2D NMR, 13C NMR, GPC, MALDI-TOF-MS and isotopic labeling experiments, which showed that the ω and α ends of the polymer chains were capped with (salen)Co and -CO2CH3 segments, respectively, from the photoinitiator (salen)Co-CO2CH3. The ω end was easily functionalized through oxygen insertion followed by hydrolysis from 18O2 to -18OH. This robust system can proceed without any additives, and offers a versatile and green way to produce well-defined homo and block copolymers.

14.
Org Biomol Chem ; 12(43): 8580-7, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25238612

RESUMO

Mediation of reversible deactivation radical polymerization (RDRP) by cobalt(II) complexes (CMRP) is the most highly developed subcategory of organometallic mediated RDRP (OMRP). Attention was paid to CMRP for its unusual high efficiency observed for the control of acrylate and vinyl acetate polymerization that produced homo- and block copolymers with narrow molecular weight distribution and a predictable molecular weight. The reactions of organic radicals with cobalt(II) metallo-radicals and organo-cobalt(III) complexes have a central role in the pathways that mediate this type of reversible deactivation radical polymerization. The reversible deactivation pathway dominates the polymerization when cobalt(II) complexes can reversibly deactivate the radicals to form organo-cobalt(III) complexes. Degenerative transfer becomes the major pathway when the cobalt(II) species fully convert to organo-cobalt(III) complexes and the radicals in solution rapidly exchange with radicals in organo-cobalt(III) complexes. This review describes the polymerization behavior and control mechanisms used by cobalt complexes in the mediation of reversible deactivation radical polymerization. The emerging developments for CMRP in the aqueous phase and with photo-initiation are also described, followed by the challenges and future applications of this method.

15.
Inorg Chem ; 48(11): 5039-46, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19422190

RESUMO

Observation of the formation and interconversion of organo-cobalt complexes ((TMP)Co-R) is used to reveal mechanistic features in the living radical polymerization (LRP) of methyl acrylate (MA) mediated by cobalt porphyrins. Both dissociative and associative exchange of radicals in solution with organo-cobalt complexes contribute to controlling the radical polymerization. The sequence of organo-cobalt species formed during the induction period for the (TMP)Co-R mediated LRP of MA indicates that homolytic dissociation is a prominent pathway for the interconversion of organo-cobalt complexes which contrasts with the corresponding vinyl acetate (VAc) system where associative radical exchange totally dominates these processes. The dissociation equilibrium constant (K(d(333 K))) for organo-cobalt complexes formed in methyl acrylate polymerization ((TMP)Co-CH(CO(2)CH(3))CH(2)P) was estimated as 1.15 x 10(-10) from analysis of the polymerization kinetics and (1)H NMR. The ratio of the rate constants (333 K) for the cyanoisopropyl radical (*C(CH(3))(2)CN) adding with monomer (k(1)) to the process of transferring a hydrogen atom to (TMP)Co(II)* (k(2)) was evaluated for the methyl acrylate system as 2 x 10(-3) which is larger than that for vinyl acetate LRP (9 x 10(-5)). Kinetic analysis places the rate constant for associative radical interchange (333 K) at approximately 7 x 10(5) M(-1) s(-1). The larger radical stabilization energy and lower energy of the singly occupied molecular orbital (SOMO) for methyl acrylate based radicals (*CH(CO(2)CH(3))CH(2)P) compared to vinyl acetate contribute to the observed prominence of organo-cobalt homolytic dissociation and much smaller chain transfer which result in substantially better control for living radical polymerization of methyl acrylate than that observed for vinyl acetate.


Assuntos
Alcenos/química , Cobalto/química , Nitrilas/química , Compostos Organometálicos/síntese química , Porfirinas/química , Compostos de Vinila/química , Simulação por Computador , Radicais Livres/química , Cinética , Modelos Químicos , Compostos Organometálicos/química , Fatores de Tempo
16.
J Am Chem Soc ; 130(40): 13373-81, 2008 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-18781751

RESUMO

Exchange of organic radicals between solution and organo-cobalt complexes is experimentally observed and the reaction pathway is probed through DFT calculations. Cyanoisopropyl radicals from AIBN (2,2'-azobisisobutyronitrile) enter solutions of cobalt(II) tetramesityl porphyrin ((TMP)Co(II)*, 1) and vinyl acetate (VAc) in benzene and react to produce transient hydride (TMP)Co-H and radicals (*CH(OAc)CH2C(CH3)2CN (R1*)) that proceed on to form organo-cobalt complexes (TMP)Co-CH(OAc)CH3 (4, Co-R2) and (TMP)Co-CH(OAc)CH2C(CH3)2CN (3, Co-R1), respectively. Rate constants for cyanoisopropyl radical addition with vinyl acetate and hydrogen atom transfer to (TMP)Co(II)* are reported through kinetic studies for the formation and transformation of organo-cobalt species in this system. Rate constants for near-degenerate exchanges of radicals in solution with organo-cobalt complexes are deduced from (1)H NMR studies and kinetic modeling. DFT computations revealed formation of an unsymmetrical adduct of (TMP)Co-CH(OAc)CH3 (4) with *CH(OAc)CH3 (R2*) and support an associative pathway for radical interchange through a three-centered three-electron transition state [R...Co...R]. Associative radical interchange of the latent radical groups in organo-cobalt porphyrin complexes with freely diffusing radicals in solution that is observed in this system provides a pathway for mediation of living radical polymerization of vinyl acetate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA