Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Chem ; 10: 944398, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35800030

RESUMO

With activated carbon as raw material, AC-Ph-SO3H was prepared after oxidation with nitric acid, modification with halogenated benzene and sulfonation with concentrated sulfuric acid. After modified by 10% bromobenzene with toluene as a solvent for 5 h, followed sulfonation with concentrated sulfuric acid at 150°C, the -SO3H content of prepared AC-Ph-SO3H was 0.64 mmol/g. Acid content test, infrared spectroscopy and Raman spectroscopy detection proved that the surface of AC-Ph-SO3H was successfully grafted with -SO3H group. When used as a catalyst for the methylation of palmitate acid, the catalytic performance of AC-Ph-SO3H was explored. When the reaction time was 6 h, the amount of catalyst acid accounted for 2.5 wt% of palmitic acid, and the molar ratio of methanol/palmitic acid was 40, the esterification rate of palmitic acid was 95.2% and the yield of methyl palmitate was 94.2%, which was much better than those of its precursors AC, AC-O, and AC-Ph (both about 4.5%). AC-Ph-SO3H exhibited certain stability in the esterification reaction system and the conversion rate of palmitic acid was still above 80% after three reuses.

2.
Nanomaterials (Basel) ; 12(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35564172

RESUMO

Through the amination of oxidized activated carbon with ethylenediamine and then the adsorption of sulfuric acid, a strong carbon-based solid acid catalyst with hydrogen sulfate (denoted as AC-N-SO4H) was prepared, of which the surface acid density was 0.85 mmol/g. The acetalization of benzaldehyde with ethylene glycol catalyzed by AC-N-SO4H was investigated. The optimized catalyst dosage accounted for 5 wt.% of the benzaldehyde mass, and the molar ratio of glycol to benzaldehyde was 1.75. After reacting such mixture at 80 °C for 5 h, the benzaldehyde was almost quantitatively converted into acetal; the conversion yield was up to 99.4%, and no byproduct was detected. It is surprising that the catalyst could be easily recovered and reused ten times without significant deactivation, with the conversion yield remaining above 99%. The catalyst also exhibited good substrate suitability for the acetalization of aliphatic aldehydes and the ketalization of ketones with different 1,2-diols.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA