Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
mBio ; : e0205124, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162526

RESUMO

Protein disulfide isomerase, containing thioredoxin (Trx) domains, serves as a vital enzyme responsible for oxidative protein folding (the formation, reduction, and isomerization of disulfide bonds in newly synthesized proteins) in the endoplasmic reticulum (ER). However, the role of ER-localized PDI proteins in parasite growth and their interaction with secretory proteins remain poorly understood. In this study, we identified two ER-localized PDI proteins, TgPDI8 and TgPDI6, in Toxoplasma gondii. Conditional knockdown of TgPDI8 resulted in a significant reduction in intracellular proliferation and invasion abilities, leading to a complete block in plaque formation on human foreskin fibroblast monolayers, whereas parasites lacking TgPDI6 did not exhibit any apparent fitness defects. The complementation of TgPDI8 with mutant variants highlighted the critical role of the CXXC active site cysteines within its Trx domains for its enzymatic activity. By utilizing TurboID-based proximity labeling, we uncovered a close association between PDI proteins and canonical secretory proteins. Furthermore, parasites lacking TgPDI8 showed a significant reduction in the expression of secretory proteins, especially those from micronemes and dense granules. In summary, our study elucidates the roles of TgPDI8 and sets the stage for future drug discovery studies. IMPORTANCE: Apicomplexans, a phylum of intracellular parasites, encompass various zoonotic pathogens, including Plasmodium, Cryptosporidium, Toxoplasma, and Babesia, causing a significant economic burden on human populations. These parasites exhibit hypersensitivity to disruptions in endoplasmic reticulum (ER) redox homeostasis, necessitating the presence of ER-localized thioredoxin (Trx) superfamily proteins, particularly protein disulfide isomerase (PDI), for proper oxidative folding. However, the functional characteristics of ER-localized PDI proteins in Toxoplasma gondii remain largely unexplored. In this study, we identified two ER-localized proteins, namely, TgPDI8 and TgPDI6, and demonstrated the indispensable role of TgPDI8 in parasite survival. Through a comprehensive multi-omics analysis, we elucidated the crucial role of TgPDI8 in the processing of secretory proteins in T. gondii. Additionally, we introduced a novel ER-anchored TurboID method to label and identify canonical secretory proteins in T. gondii. This research opens up new avenues for understanding oxidative folding and the secretory pathway in apicomplexan parasites, laying the groundwork for future advancements in antiparasitic drug development.

2.
Parasit Vectors ; 17(1): 284, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956725

RESUMO

BACKGROUND: Toxoplasma gondii infection affects a significant portion of the global population, leading to severe toxoplasmosis and, in immunocompromised patients, even death. During T. gondii infection, disruption of gut microbiota further exacerbates the damage to intestinal and brain barriers. Therefore, identifying imbalanced probiotics during infection and restoring their equilibrium can regulate the balance of gut microbiota metabolites, thereby alleviating tissue damage. METHODS: Vimentin gene knockout (vim-/-) mice were employed as an immunocompromised model to evaluate the influence of host immune responses on gut microbiota balance during T. gondii infection. Behavioral experiments were performed to assess changes in cognitive levels and depressive tendencies between chronically infected vim-/- and wild-type (WT) mice. Fecal samples were subjected to 16S ribosomal RNA (rRNA) sequencing, and serum metabolites were analyzed to identify potential gut probiotics and their metabolites for the treatment of T. gondii infection. RESULTS: Compared to the immunocompetent WT sv129 mice, the immunocompromised mice exhibited lower levels of neuronal apoptosis and fewer neurobehavioral abnormalities during chronic infection. 16S rRNA sequencing revealed a significant decrease in the abundance of probiotics, including several species of Lactobacillus, in WT mice. Restoring this balance through the administration of Lactobacillus murinus and Lactobacillus gasseri significantly suppressed the T. gondii burden in the intestine, liver, and brain. Moreover, transplantation of these two Lactobacillus spp. significantly improved intestinal barrier damage and alleviated inflammation and neuronal apoptosis in the central nervous system. Metabolite detection studies revealed that the levels of various Lactobacillus-related metabolites, including indole-3-lactic acid (ILA) in serum, decreased significantly after T. gondii infection. We confirmed that L. gasseri secreted much more ILA than L. murinus. Notably, ILA can activate the aromatic hydrocarbon receptor signaling pathway in intestinal epithelial cells, promoting the activation of CD8+ T cells and the secretion of interferon-gamma. CONCLUSION: Our study revealed that host immune responses against T. gondii infection severely disrupted the balance of gut microbiota, resulting in intestinal and brain damage. Lactobacillus spp. play a crucial role in immune regulation, and the metabolite ILA is a promising therapeutic compound for efficient and safe treatment of T. gondii infection.


Assuntos
Lesões Encefálicas , Microbioma Gastrointestinal , Camundongos Knockout , Toxoplasma , Animais , Camundongos , Toxoplasma/imunologia , Lesões Encefálicas/imunologia , Probióticos/administração & dosagem , Encéfalo/imunologia , Lactobacillus , Modelos Animais de Doenças , Hospedeiro Imunocomprometido , Toxoplasmose/imunologia , RNA Ribossômico 16S/genética , Masculino , Intestinos/imunologia
3.
Parasit Vectors ; 17(1): 322, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080770

RESUMO

BACKGROUND: Toxoplasma gondii is an opportunistic pathogenic protozoan that infects all warm-blooded animals, including humans, and causes zoonotic toxoplasmosis. The bradyzoite antigen 1 (BAG1), known as heat-shock protein (HSP)30, is a specific antigen expressed during the early stage of T. gondii tachyzoite-bradyzoite conversion. METHODS: A bag1 gene knockout strain based on the T. gondii type II ME49 was constructed and designated as ME49Δbag1. The invasion, proliferation, and cyst formation efficiency in the cell model and survival in the mouse model were compared between the ME49 and ME49Δbag1 strains after infection. Quantitative polymerase chain reaction (qPCR) was used to detect the transcriptional level of important genes, and western-blot was used to detect protein levels. RESULTS: ME49Δbag1 displayed significantly inhibited cyst formation, although it was not completely blocked. During early differentiation induced by alkaline and starvation conditions in vitro, the proliferation of ME49Δbag1 was significantly accelerated relative to the ME49 strain. Meanwhile, the transcription of the HSP family and bradyzoite formation deficient 1 (bfd1) were significantly enhanced. The observed upregulation suggests a compensatory mechanism to counterbalance the impaired stress responses of T. gondii following bag1 knockout. On the other hand, the elevated transcription levels of several HSP family members, including HSP20, HSP21, HSP40, HSP60, HSP70, and HSP90, along with BFD1, implied the involvement of alternative regulatory factors in bradyzoite differentiation aside from BAG1. CONCLUSIONS: The data suggested that when bag1 was absent, the stress response of T. gondii was partially compensated by increased levels of other HSPs, resulting in the formation of fewer cysts. This highlighted a complex regulatory network beyond BAG1 influencing the parasite's transformation into bradyzoites, emphasizing the vital compensatory function of HSPs in the T. gondii life cycle adaptation.


Assuntos
Proteínas de Choque Térmico , Proteínas de Protozoários , Toxoplasma , Toxoplasma/genética , Toxoplasma/metabolismo , Animais , Camundongos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Técnicas de Inativação de Genes , Toxoplasmose Animal/parasitologia , Feminino , Humanos , Proteínas de Ligação a DNA , Fatores de Transcrição
4.
J Psychiatr Res ; 175: 243-250, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38749298

RESUMO

Toxoplasma gondii (T. gondii) is an opportunistic pathogen affecting about 1/3 of world population. While often asymptomatic in immunocompetent individuals, it can lead to severe toxoplasmosis in immunocompromised patients. Recent research has unveiled a potential link between T. gondii infection and neuropsychiatric diseases. We implemented both a cohort study and a case control study to further identify this association. In the cohort study, we analyzed data from the UK Biobank database, which included 8814 individuals tested for T. gondii SAG1 antibodies and free of neuropsychiatric disorders at baseline. Among them, 22.52% (n = 1985) tested positive for SAG1 antibody. Over an average follow-up period of 12.26 years, Cox proportional hazards models and logistic regression analysis revealed a significant association between the SAG1 seropositivity at baseline and the incidence of schizophrenia (HR: 5.89; 95% CI: 1.69-20.53). In our case-control study, 239 patients diagnosed with schizophrenia and 455 healthy individuals were involved. Using the modified agglutination test (MAT) to detect T. gondii antibodies, logistic regression analysis showed a higher prevalence of T. gondii infection among schizophrenia patients (10.04%) compared to healthy controls (3.74%). T. gondii infection emerged as a significant risk factor for schizophrenia (OR: 3.33; 95% CI: 1.68-6.61). However, our investigations did not reveal a robust association between T. gondii infection and other neuropsychiatric conditions, including Alzheimer's disease, dementia, anxiety, depression, neurodegenerative disorders, and peripheral neurological disorders such as neurological and plexus disorders.

5.
J Affect Disord ; 359: 41-48, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38729222

RESUMO

BACKGROUND: Accumulating evidence suggests that latent infection with Toxoplasma gondii (T. gondii) is associated with a variety of neuropsychiatric and behavioral conditions. This research aims to explore the potential correlation between T. gondii antibody positivity and neuropsychiatric disorders through a comprehensive prospective cohort study. METHODS: The cohort study utilized the UK Biobank database to recruit 8814 individuals with no prior diagnosis of neuropsychiatric disorders. Cox proportional hazards models were employed to investigate the associations between T. gondii P22 antibody seropositivity (P22+) and the development of various types of neuropsychiatric disorders. RESULTS: Of the population, 14.65 % tested positive for T. gondii P22 antibody. The presence of T. gondii P22 antibody showed a slight inverse association with epilepsy (HR: 0.28; 95 % CI: 0.10-0.77), while it was positively associated with an increased risk of developing anxiety disorders (HR: 1.38; 95 % CI: 1.04-1.83). LIMITATIONS: The study sample consisted mostly of white British individuals aged 40 to 69 years old. Although we adjusted for potential confounders, there may be other unmeasured and residual confounding factors that could have influenced our reported associations. CONCLUSIONS: The findings suggested an increased risk of anxiety and potential evidence of epilepsy associated with T. gondii P22+. However, our analysis did not reveal an increased risk of several other neuropsychiatric conditions including Alzheimer's disease, dementia, substance abuse disorders, depression, and neurodegenerative disorders, associated with P22 antibody seropositivity.


Assuntos
Toxoplasma , Toxoplasmose , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Toxoplasma/imunologia , Adulto , Idoso , Toxoplasmose/imunologia , Toxoplasmose/epidemiologia , Toxoplasmose/sangue , Reino Unido , Estudos Prospectivos , Epilepsia/imunologia , Anticorpos Antiprotozoários/sangue , Transtornos de Ansiedade/imunologia , Transtornos de Ansiedade/epidemiologia , Modelos de Riscos Proporcionais , Estudos de Coortes , Infecção Latente/imunologia , Ansiedade/imunologia , Ansiedade/epidemiologia
6.
Microbiol Spectr ; 11(6): e0007423, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37909781

RESUMO

IMPORTANCE: This is the first report that a human E3 ubiquitin ligase, Casitas B-lineage lymphoma proto-oncogene B (Cbl-b), functions as a host dependency factor for the intracellular protozoan Toxoplasma gondii and the mechanism for how T. gondii infection inhibits the TLR/MyD88 innate immunity pathway through MyD88 degradation mediated by Cbl-b. This finding is an impactful contribution for understanding the host cell immunity against T. gondii infection.


Assuntos
Fator 88 de Diferenciação Mieloide , Toxoplasma , Humanos , Imunidade Inata , Ubiquitina-Proteína Ligases
7.
Acta Parasitol ; 68(4): 820-831, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37821727

RESUMO

PURPOSE: To explore the essential roles of phosphorylation in mediating the proliferation of T. gondii in its cell lytic life. METHODS: We profiled the phosphoproteome data of T. gondii residing in HFF cells for 2 h and 6 h, representing the early- and late-stages of proliferation (ESP and LSP) within its first generation of division. RESULTS: We identified 70 phosphoproteins, among which 8 phosphoproteins were quantified with the phosphorylation level significantly regulated. While only two of the eight phosphoproteins, GRA7 and TGGT1_242070, were significantly down-regulated at the transcriptional level in the group of LSP vs. ESP. Moreover, GO terms correlated with host membrane component were significantly enriched in the category of cellular component, suggesting phosphoprotein played important roles in acquiring essential substance from host cell via manipulating host membrane. Further GO analysis in the categories of molecular function and biological process and pathway analysis revealed that the cellular processes of glucose and lipid metabolism were regulated by T. gondii phosphoproteins such as PMCAA1, LIPIN, Pyk1 and ALD. Additionally, several phosphoproteins were enriched at the central nodes in the protein-protein interaction network, which may have essential roles in T. gondii proliferation including GAP45, MLC1, fructose-1,6-bisphosphate aldolase, GRAs and so on. CONCLUSION: This study revealed the main cellular processes and key phosphoproteins crucial for the intracellular proliferation of T. gondii, which would provide clues to explore the roles of phosphorylation in regulating the development of tachyzoites and new insight into the mechanism of T. gondii development in vitro.


Assuntos
Fenômenos Biológicos , Toxoplasma , Animais , Toxoplasma/fisiologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Proliferação de Células
8.
Cell Mol Immunol ; 20(10): 1156-1170, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37553429

RESUMO

The gut microbiome is recognized as a key modulator of sepsis development. However, the contribution of the gut mycobiome to sepsis development is still not fully understood. Here, we demonstrated that the level of Candida albicans was markedly decreased in patients with bacterial sepsis, and the supernatant of Candida albicans culture significantly decreased the bacterial load and improved sepsis symptoms in both cecum ligation and puncture (CLP)-challenged mice and Escherichia coli-challenged pigs. Integrative metabolomics and the genetic engineering of fungi revealed that Candida albicans-derived phenylpyruvate (PPA) enhanced the bactericidal activity of macrophages and reduced organ damage during sepsis. Mechanistically, PPA directly binds to sirtuin 2 (SIRT2) and increases reactive oxygen species (ROS) production for eventual bacterial clearance. Importantly, PPA enhanced the bacterial clearance capacity of macrophages in sepsis patients and was inversely correlated with the severity of sepsis in patients. Our findings highlight the crucial contribution of commensal fungi to bacterial disease modulation and expand our understanding of the host-mycobiome interaction during sepsis development.


Assuntos
Candida albicans , Sepse , Humanos , Animais , Camundongos , Suínos , Macrófagos , Ceco , Camundongos Endogâmicos C57BL
9.
Front Immunol ; 14: 1173379, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426671

RESUMO

Toxoplasma gondii is the causative agent of toxoplasmosis, a zoonotic disease that poses a threat to human health and a considerable loss to livestock farming. At present, clinical therapeutic drugs mainly target T. gondii tachyzoites and fail to eradicate bradyzoites. Developing a safe and effective vaccine against toxoplasmosis is urgent and important. Breast cancer has become a major public health problem and the therapeutic method needs to be further explored. Many similarities exist between the immune responses caused by T. gondii infection and the immunotherapy for cancers. T. gondii dense granule organelles secrete immunogenic dense granule proteins (GRAs). GRA5 is localized to the parasitophorous vacuole membrane in the tachyzoite stage and the cyst wall in the bradyzoite stage. We found that T. gondii ME49 gra5 knockout strain (ME49Δgra5) was avirulent and failed to form cysts but stimulated antibodies, inflammatory cytokines, and leukocytes infiltration in mice. We next investigated the protective efficacy of ME49Δgra5 vaccination against T. gondii infection and tumor development. All the immunized mice survived the challenge infection of either wild-type RH, ME49, VEG tachyzoites, or ME49 cysts. Moreover, ME49Δgra5 tachyzoite inoculation in situ attenuated the growth of murine breast tumor (4T1) in mice and prevented 4T1's lung metastasis. ME49Δgra5 inoculation upregulated the levels of Th1 cytokines and tumor-infiltrating T cells in the tumor microenvironment and triggered anti-tumor responses by increasing the number of natural killer, B, and T cells, macrophages, and dendritic cells in the spleen. Collectively, these results suggested that ME49Δgra5 was a potent live attenuated vaccine against T. gondii infection and breast cancer.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Toxoplasma , Toxoplasmose Animal , Animais , Humanos , Camundongos , Feminino , Toxoplasma/genética , Proteínas de Protozoários , Citocinas/metabolismo , Imunoglobulina G/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/prevenção & controle , Microambiente Tumoral
10.
Eur Phys J B ; 96(3): 35, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36974335

RESUMO

Abstract: Price dynamics in stock market is modelled by a statistical physics systems: Ising model. A comparative analysis of the historical dynamics of stock returns between the US, UK, and French markets is given. Since the Ising model requires binary inputs, the effect of binarization is studied. Then, using the TAP approximation method, external fields and coupling strengths are calculated. The fluctuation cycles of coupling strengths have a remarkable corresponding relationship with the important period of the financial market. The highlight of this paper is to verify the phase transition can also occur in the stock market and it reveals the transformation of the market state. The numerical solution in this paper is consistent with the exact solution obtained by Lars Onsager. Our findings can help to discover the economic cycles and provide more possibilities for studying financial markets using physical models.

11.
Front Cell Infect Microbiol ; 12: 959300, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118042

RESUMO

Tumor cells can successfully escape the host immune attack by inducing the production of immunosuppressive cells and molecules, leading to an ineffective tumor treatment and poor prognosis. Although immunotherapies have improved the survival rate of cancer patients in recent years, more effective drugs and therapies still need to be developed. As an intracellular parasite, Toxoplasma gondii can trigger a strong Th1 immune response in host cells, including upregulating the expression of interleukin-12 (IL-12) and interferon-γ (IFN-γ). Non-replicating uracil auxotrophic strains of T. gondii were used to safely reverse the immunosuppression manipulated by the tumor microenvironment. In addition to the whole lysate antigens, T. gondii-secreted effectors, including Toxoplasma profilin, rhoptry proteins (ROPs), and dense granule antigens (GRAs), are involved in arousing the host's antigen presentation system to suppress tumors. When T. gondii infection relieves immunosuppression, tumor-related myeloid cells, including macrophages and dendritic cells (DCs), are transformed into immunostimulatory phenotypes, showing a powerful Th1 immune response mediated by CD8+ T cells. Afterwards, they target and kill the tumor cells, and ultimately reduce the size and weight of tumor tissues. This article reviews the latest applications of T. gondii in tumor therapy, including the activation of cellular immunity and the related signal pathways, which will help us understand why T. gondii infection can restrain tumor growth.


Assuntos
Síndromes de Imunodeficiência , Neoplasias , Toxoplasma , Toxoplasmose , Antígenos Virais de Tumores , Linfócitos T CD8-Positivos , Humanos , Terapia de Imunossupressão , Interferon gama , Interleucina-12/metabolismo , Neoplasias/terapia , Profilinas , Microambiente Tumoral , Uracila
12.
ACS Sens ; 7(7): 1855-1866, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35775925

RESUMO

Bright monomeric near-infrared fluorescent proteins (NIR-FPs) are useful as markers for labeling proteins and cells and as sensors for reporting molecular activities in living cells and organisms. However, current monomeric NIR-FPs are dim under excitation with common 633/635/640 nm lasers, limiting their broad use in cellular/subcellular level imaging. Here, we report a bright monomeric NIR-FP with maximum excitation at 633 nm, named mIFP663, engineered from Xanthomonas campestris pv Campestris phytochrome (XccBphP). mIFP663 has high molecular brightness with a large extinction coefficient (86,600 M-1 cm-1) and a decent quantum yield (19.4%), and high cellular brightness that is 3-6 times greater than those of spectrally similar NIR-FPs in HEK293T cells in the presence of exogenous BV. Moreover, we demonstrate that mIFP663 is able to label critical cellular and viral proteins without perturbing subcellular localization and virus replication, respectively. Finally, with mIFP663, we engineer improved bimolecular fluorescence complementation (BiFC) and new bioluminescent resonance energy transfer (BRET) systems to detect protein-protein interactions in living cells.


Assuntos
Fitocromo , Células HEK293 , Células HeLa , Humanos , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência/métodos , Fitocromo/metabolismo
13.
Acta Trop ; 229: 106329, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35122712

RESUMO

The intracellular protozoan Toxoplasma gondii results in serious diseases such as encephalitis, and retinochoroiditis in immunocompromised patients. The interconversion between tachyzoites and bradyzoites under the host's immune pressure results in the interchange of acute infection and chronic infection. We previously reported two functional DNA methyltransferases (DNMT) in Toxoplasma gondii named TgDNMTa and TgDNMTb. In this research, proteomics analysis for T. gondii tachyzoites of ME49 WT, dnmta knockout (ME49-∆Tgdnmta), and dnmtb knockout (ME49-∆Tgdnmtb) strains, revealed 362 significantly regulated proteins for ME49-∆Tgdnmta, and 219 for ME49-∆Tgdnmtb, compared with the proteins of ME49 WT. TgDNMTa down regulated three glycolytic enzymes, one gluconeogenic enzyme and four pyruvate metabolic enzymes. Furthermore, TgDNMTb up regulated two proteins in the tricarboxylic acid (TCA) cycle. Glucose metabolic flux detection showed that TgDNMTa inhibited the glycolysis pathway, while TgDNMTb promoted the tricarboxylic acid (TCA) cycle so as to promote parasite's proliferation. These findings demonstrated that the functions of Toxoplasma gondii DNA methyltransferases extended beyond DNA methylation to the regulation of parasitic energy metabolism.


Assuntos
Metiltransferases , Proteínas de Protozoários , Toxoplasma , DNA , Metabolismo Energético , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/enzimologia
14.
Parasit Vectors ; 15(1): 3, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34986898

RESUMO

BACKGROUND: Toxoplasma gondii is a zoonotic intracellular protozoon that is estimated to infect about 30% of the world's population, resulting in toxoplasmosis in immunocompromised patients and adverse outcomes in cases of primary infection during pregnancy. Exosomes are tubular vesicles secreted by cells, and function in intercellular communication. It has been reported that the exosomes secreted by T. gondii-infected immune cells transmit infection signals to the uninfected cells. However, the mechanism and effect of the exosome transmission are still vague. We therefore investigated the function of the exosomes transmitted from DC2.4 cells infected with the T. gondii RH strain (Tg-DC-Exo) to the uninfected cells, as well as their roles in anti-infection. METHODS: We conducted exosome isolation and identification with ultracentrifugation, transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blot (WB) analysis. Exosome uptake by recipient cells was identified by PKH67 assay. The signal transmission and the abundance of miR-155-5p were determined using transwell assay and qRT-PCR. For detection of immune responses, cytokine secretion was evaluated. The T. gondii B1 gene was determined to evaluate tachyzoite proliferation. RESULTS: We observed that Toxoplasma infection upregulated miR-155-5p expression in DC2.4 cell-secreted exosomes, and those exosomes could be ingested by murine macrophage RAW264.7 cells. Tg-DC-Exo and miR-155-5p stimulated host proinflammatory immune responses including increased production of proinflammatory cytokines IL-6 and TNF-α, and proinflammatory marker-inducible nitric oxide synthase (iNOS). The NF-κB pathway was activated by downregulation of SOCS1, leading to inhibition of T. gondii tachyzoite proliferation in RAW264.7 cells. CONCLUSIONS: Our findings provide a novel mechanism for how infected cells transmit infection signals to the uninfected cells through exosome secretion after T. gondii infection, followed by inflammatory responses and anti-infection reactions, which may help us develop a new strategy for toxoplasmosis prevention, especially in immunocompromised patients.


Assuntos
Células Dendríticas/parasitologia , Exossomos/metabolismo , MicroRNAs/farmacologia , Toxoplasma/fisiologia , Zoonoses/parasitologia , Animais , Linhagem Celular , Células Dendríticas/metabolismo , Exossomos/parasitologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Camundongos , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Células RAW 264.7 , Coelhos , Transdução de Sinais
15.
FASEB J ; 36(2): e22171, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35084749

RESUMO

Toxoplasma gondii is an opportunistic protozoan, which widely infects humans and other warm-blooded animals. The type I interferon (IFN) such as IFN-α/ß is involved in cGAS-STING signaling to resist T. gondii infection. We found in RAW264.7 cells, that T. gondii virulence factor TgROP18I , inhibited IFN-ß production through interacting with interferon regulatory factor 3 (IRF3). Besides, TgROP18I interacted with p62 and Tumor Necrotic Factor Receptor Associated Factor 6 (TRAF6), which resulted in the inhibition of TRAF6-p62 interaction, and phosphorylation of p62. Furthermore, TgROP18I restricted the recruitment of ubiquitin, p62 and microtubule-associated protein light chain 3 (LC3) to the parasitophorous vacuole membrane (PVM) in IFN-γ-stimulated murine cell line L929 cells. In IFN-γ-stimulated human cells, TgROP18I restricted the decoration of PVM with ubiquitin, p62, and LC3, and bound with TRAF2, TRAF6, and p62, respectively. As a result, TgROP18I led to a successful parasitic replication in murine and human cells. Collectively, our study revealed the function of TgROP18I in suppressing host type I interferon responses in T. gondii infection for parasitic immune escape.


Assuntos
Imunidade Inata/imunologia , Proteínas de Membrana/imunologia , Nucleotidiltransferases/imunologia , Transdução de Sinais/imunologia , Toxoplasma/imunologia , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/imunologia , Interferon Tipo I/imunologia , Interferon gama/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Camundongos , Fosforilação/imunologia , Células RAW 264.7 , Fatores de Virulência/imunologia
16.
Parasit Vectors ; 14(1): 601, 2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34895326

RESUMO

BACKGROUND: Breast cancer is the most common cause of cancer-related death among women, and prognosis is especially poor for patients with triple-negative breast cancer (TNBC); therefore, there is an urgent need for new effective therapies. Recent studies have demonstrated that the uracil auxotroph Toxoplasma gondii vaccine displays anti-tumor effects. Here, we examined the immunotherapy effects of an attenuated uracil auxotroph strain of T. gondii against 4T1 murine breast cancer. METHODS: We constructed a uracil auxotroph T. gondii RH strain via orotidine 5'-monophosphate decarboxylase gene deletion (RH-Δompdc) with CRISPR/Cas9 technology. The strain's virulence in the T. gondii-infected mice was determined in vitro and in vivo by parasite replication assay, plaque assay, parasite burden detection in mice peritoneal fluids and survival analysis. The immunomodulation ability of the strain was evaluated by cytokine detection. Its anti-tumor effect was evaluated after its in situ inoculation into 4T1 tumors in a mouse model; the tumor volume was measured, and the 4T1 lung metastasis was detected by hematoxylin and eosin and Ki67 antibody staining, and the cytokine levels were measured by an enzyme-linked immunosorbent assay. RESULTS: The RH-Δompdc strain proliferated normally when supplemented with uracil, but it was unable to propagate without the addition of uracil and in vivo, which suggested that it was avirulent to the hosts. This mutant showed vaccine characteristics that could induce intense immune responses both in vitro and in vivo by significantly boosting the expression of inflammatory cytokines. Inoculation of RH-Δompdc in situ into the 4T1 tumor inhibited tumor growth, reduced lung metastasis, promoted the survival of the tumor-bearing mice and increased the secretion of Th1 cytokines, including interleukin-12 (IL-12) and interferon-γ (INF-δ), in both the serum and tumor microenvironment (TME). CONCLUSION: Inoculation of the uracil auxotroph RH-Δompdc directly into the 4T1 tumor stimulated anti-infection and anti-tumor immunity in mice, and resulted in inhibition of tumor growth and metastasis, promotion of the survival of the tumor-bearing mice and increased secretion of IL-12 and IFN-γ in both the serum and TME. Our findings suggest that the immunomodulation caused by RH-Δompdc could be a potential anti-tumor strategy.


Assuntos
Antineoplásicos/imunologia , Neoplasias da Mama/tratamento farmacológico , Imunomodulação , Toxoplasma/imunologia , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Metástase Neoplásica/prevenção & controle , Uracila/metabolismo
17.
iScience ; 24(12): 103514, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34950858

RESUMO

Toxoplasma gondii surface antigen 1 (TgSAG1) is a surface protein of tachyzoites, which plays a crucial role in toxoplasma gondii infection and host cell immune regulation. However, how TgSAG1 regulates these processes remains elucidated. We utilized the biotin ligase -TurboID fusion with TgSAG1 to identify the host proteins interacting with TgSAG1, and identified that S100A6 was co-localized with TgSAG1 when T. gondii attached to the host cell. S100A6, either knocking down or blocking its functional epitopes resulted in inhibited parasites invasion. Meanwhile, S100A6 overexpression in host cells promoted T. gondii infection. We further verified that TgSAG1 could inhibit the interaction of host cell vimentin with S100A6 for cytoskeleton organization during T. gondii invasion. As an immunogen, TgSAG1 could promote the secretion of tumor necrosis factor alpha (TNF-α) through S100A6-Vimentin/PKCθ-NF-κB signaling pathway. In summary, our findings revealed a mechanism for how TgSAG1 functioned in parasitic invasion and host immune regulation.

18.
Front Cell Dev Biol ; 9: 685913, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124071

RESUMO

Toxoplasma gondii is an intracellular pathogen that exerts its virulence through inhibiting host's innate immune responses, which is mainly related to the type II interferon (IFN-γ) response. IFN-γ inducible tripartite motif 21 (TRIM21), an E3 ligase, plays an important role in anti-infection responses against the intracellular pathogens including bacteria, virus, and parasite. We found that T. gondii virulence factor ROP18 of the type I RH strain (TgROP18I) interacted with human TRIM21, and promoted the latter's phosphorylation, which subsequently accelerated TRIM21 degradation through lysosomal pathway. Furthermore, TRIM21 protein level was found to be upregulated during RH and CEP strains of T. gondii infection. TRIM21 knocking down reduced the ubiquitin labeling on the parasitophorous vacuole membrane (PVM) [which led to parasitophorous vacuole (PV) acidification and death of CEP tachyzoites], and relieved the inhibition of CEP proliferation induced by IFN-γ in human foreskin fibroblast (HFF) cells which was consistent with the result of TRIM21 overexpression. On the other hand, TRIM21 overexpression enhanced the inhibition of CEP proliferation, and inhibited the binding of IκB-α with p65 to activate the IFN-γ-inducible NF-κB pathway, which might be resulted by TRIM21-IκB-α interaction. In brief, our research identified that in human cells, IFN-γ-inducible TRIM21 functioned in the innate immune responses against type III T. gondii infection; however, TgROP18I promoted TRIM21 phosphorylation, leading to TRIM21 degradation for immune escape in type I strain infection.

19.
Pathol Res Pract ; 221: 153337, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33798911

RESUMO

BACKGROUND: Papillary thyroid microcarcinoma (PTM) belongs to papillary carcinomas whose length is about 1.0 cm. According to previous studies, FOXE1 is a transcription factor involved in the progression of papillary thyroid carcinoma (PTC). However, its detailed upstream mechanism remains unknown in PTM. OBJECTIVE: Our study aimed at detecting and verifying the up-regulation of FOXE1 in PTM cell lines. METHODS: FXOE1 expression was detected in PTM and normal cells through RT-qPCR. Loss-of-function experiments were conducted to identify the effect of silenced FOXE1 on cell proliferation, apoptosis, migration and invasion. Mechanism experiments were carried out to explore the upstream molecular mechanism of FOXE1. RESULTS: Knockdown of FOXE1 could lead to the inhibition on cell proliferation, migration and invasion while positively regulating cell apoptosis. Importantly, Yin-Yang-1 (YY1) could boost the transcription of FOXE1, thereby upregulating FOXE1. Also, the binding potential of miR-129-5p to FOXE1 was identified in PTM cells and MiR-129-5p could target FOXE1. In addition, the cellular processes in PTM were hindered with the increase of miR-129-5p expression level. CONCLUSION: Our research suggested that the up-regulation of FOXE1 is regulated by YY1 and miR-129-5p, which may contribute to PTM progression.


Assuntos
Carcinoma Papilar/patologia , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , MicroRNAs/metabolismo , Neoplasias da Glândula Tireoide/patologia , Fator de Transcrição YY1/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Humanos , Regulação para Cima
20.
Front Cell Infect Microbiol ; 10: 586466, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363051

RESUMO

The invasion and egress are two key steps in lytic cycle vital to the propagation of Toxoplasma gondii infection, and phosphorylation is believed to play important roles in these processes. However, the phosphoproteome of T. gondii at these two stages has not been characterized. In this study, we profiled the phosphoproteome of tachyzoites at the stages of "just invading" (JI) and "prior to egress" (PE) based on iTRAQ quantitative analysis, in which a total of 46 phosphopeptides, 42 phosphorylation sites, and 38 phosphoproteins were detected. In the comparison of PE vs. JI, 10 phosphoproteins were detected with their phosphorylation level significantly changed, and four of them were demonstrated to be significantly down-regulated at the transcriptional level. Bioinformatic analysis of these identified phosphoproteins suggested that phosphorylation-mediated modulation of protein function was employed to regulate the pathway of toxoplasmosis and metabolism and cellular processes correlated with tachyzoite's binding, location, and metabolism, and thus play vital roles in the parasite lytic cycle. Moreover, cytoskeletal network (CN)-associated Inner Membrane Complex (IMC1, IMC4, IMC6 and IMC12), Intravascular Network (IVN)-related GRAs (GRA2, GRA3, GRA7 and GRA12), and Parasitophorous Vacuole Membrane (PVM)-localized ROP5 were shown to be enriched at the central nodes in the protein interaction network generated by bioinformatic analysis, in which the phosphorylation level of IMC4, GRA2, GRA3, and GRA12 were found to be significantly regulated. This study revealed the main cellular processes and key phosphoproteins crucial for the invasion and egress of T. gondii, which will provide new insights into the developmental biology of T. gondii in vitro and contribute to the understanding of pathogen-host interaction from the parasite perspective.


Assuntos
Toxoplasma , Toxoplasmose , Animais , Interações Hospedeiro-Patógeno , Fosforilação , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA