Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Sci Total Environ ; 931: 172719, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663599

RESUMO

Long-term, high-resolution regional drought records contribute to understanding the impacts of drought on environmental and social systems in central China. Here, we develop a regional tree-ring width chronology of Pinus tabulaeformis Carr from the northern slope of Funiu Mountains on the north-south transition zone in central China. Monthly correlation analyses showed that temperature and humidity in current May and June are main limiting factors on tree growth. Despite that, the highest correlation with tree growth was found to be precipitation from previous December to current June (PreDJ, 0.718, p < 0.001), which was chosen for reconstruction. The reconstructed PreDJ revealed six drought periods and five wet periods over the past 220 years, and the recent dry spell would likely to continue. Spectral analyses indicated that the reconstructed PreDJ was closely related to the El Nino-Southern Oscillation (ENSO, 2-7a) and 35a climatic oscillation of Bruckner, and was also affected by the Quasi-Biennial Oscillation (QBO). Wavelet analyses showed that the quasi-cycle of 2-7a persisted over the past 220 years and strengthened after the 1980s, and the QBO signals appeared from the 1860s to 1970s and wear off thereafter, and 35a cycle only appeared during 1820-1920. Spatial analysis found that the reconstructed PreDJ had good spatial representation of precipitation in the central-eastern China. Therefore, the results of this study provide reliable information for understanding long-term drought impacts on environmental conditions and socioeconomic development in central China.

2.
J Hazard Mater ; 467: 133478, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38359766

RESUMO

Residual antiviral drugs in wastewater may increase the risk of generating transformation products (TPs) during wastewater treatment. Therefore, chlorination behavior and toxicity evolution are essential to understand the secondary ecological risk associated with their TPs. Herein, chlorination kinetics, transformation pathways, and secondary risks of ribavirin (RBV), one of the most commonly used broad-spectrum antivirals, were investigated. The pH-dependent second-order rate constants k increased from 0.18 M-1·s-1 (pH 5.8) to 1.53 M-1·s-1 (pH 8.0) due to neutral RBV and ClO- as dominant species. 12 TPs were identified using high-resolution mass spectrometry in a nontargeted approach, of which 6 TPs were reported for the first time, and their chlorination pathways were elucidated. The luminescence inhibition rate of Vibrio fischeri exposed to chlorinated RBV solution was positively correlated with initial free active chlorine, probably due to the accumulation of toxic TPs. Quantitative structure-activity relationship prediction identified 7 TPs with elevated toxicity, concentrating on developmental toxicity and bioconcentration factors, which explained the increased toxicity of chlorinated RBV. Overall, this study highlights the urgent need to minimize the discharge of toxic chlorinated TPs into aquatic environments and contributes to environmental risk control in future pandemics and regions with high consumption of antivirals.


Assuntos
Halogenação , Ribavirina , Ribavirina/toxicidade , Halogênios , Aliivibrio fischeri , Antivirais/toxicidade
3.
Cancer Biol Med ; 20(12)2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38318930

RESUMO

Maintenance immunotherapy after concurrent chemoradiotherapy remains the standard therapeutic approach in patients with unresectable locally advanced non-small cell lung cancer (LA-NSCLC). The efficacy of pembrolizumab without chemotherapy in stage IV NSCLC has incited interest in similar approaches for LA-NSCLC. Several recent investigations involving the synergistic potential of immunotherapy combined with radiotherapy (iRT) have generated encouraging results. This review discusses the existing studies and prospective directions of chemotherapy-free iRT strategies in unresectable LA-NSCLC. Although the initial findings of chemotherapy-free iRT strategies have shown promising efficacy, we must consider the methodologic limitations of current studies and the myriad of challenges that accompany the implementation of chemotherapy-free iRT. These challenges include determining the optimal dose and fractionation, precise target volume delineation, and identification of additional suitable patient cohorts. Furthermore, the feasibility of chemotherapy-free iRT as a novel treatment modality for select patients with LA-NSCLC is contingent upon validation through randomized phase III trials.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Estudos Prospectivos , Quimiorradioterapia/métodos
4.
Sci Total Environ ; 903: 166036, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37544457

RESUMO

In lake environments, seasonal changes can cause exposure of the lake sediment, leading to soil formation. Although previous studies have explored how environmental changes influence microbial functioning in the water-level-fluctuating zone, few studies have investigated how wholescale habitat changes affect microbial composition, community stability and ecological functions in lake environments. To address this issue, our study investigated the effects of sediment-to-soil conversion on microbial composition, community stability and subsequent ecological functioning in Poyang Lake, China. Our results revealed that, during sediment-to-soil conversion, the number of total and unique operational taxonomic units (OTUs) decreased by 40 % and 55 %, respectively. Moreover, sediment-to-soil conversion decreased the microbial community connectivity and complexity while significantly increasing its stability, as evidenced by increased absolute values of negative/positive cohesion. In sediment and soil, the abundance of dominant bacteria, and bacterial diversity strongly affected microbial community stability, although this phenomenon was not true in water. Furthermore, the specific microbial phyla and genes involved in the nitrogen cycle changed significantly following sediment-to-soil conversion, with the major nitrogen cycling processes altering from denitrification and dissimilatory nitrate reduction to ammonium to nitrification and assimilatory nitrate reduction to ammonia. Moreover, a compensation mechanism was observed in the functional genes related to the nitrogen cycle, such that all the processes in the nitrogen cycle were maintained following sediment-to-soil conversion. The oxidation-reduction potential strongly affected network complexity, microbial stability, and nitrogen cycling in the sediment and soil. These results aid in the understanding of responses of microorganisms to climate change and extreme drought. Our findings have considerable implications for predicting the ecological consequences of habitat conversion and for ecosystem management.

5.
Radiat Oncol ; 18(1): 111, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37403111

RESUMO

BACKGROUND: The CREST study showed that the addition of thoracic radiotherapy (TRT) could improve the survival rate in patients with extensive stage small cell lung cancer (ES-SCLC), but whether TRT can bring survival benefit in the era of immunotherapy remains controversial. This study aimed to explore the efficacy and safety of adding TRT to the combination of PD-L1 inhibitors and chemotherapy. METHODS: The patients who received durvalumab or atezolizumab combined with chemotherapy as the first-line treatment of ES-SCLC from January 2019 to December 2021 were enrolled. They were divided into two groups, based on whether they received TRT or not. Propensity score matching (PSM) with a 1:1 ratio was performed. The primary endpoints were progression-free survival (PFS), overall survival (OS) and safety. RESULTS: A total of 211 patients with ES-SCLC were enrolled, of whom 70 (33.2%) patients received standard therapy plus TRT as first-line treatment, and 141 (66.8%) patients in the control group received PD-L1 inhibitors plus chemotherapy. After PSM, a total of 57 pairs of patients were enrolled in the analysis. In all patients, the median PFS (mPFS) in the TRT and non-TRT group was 9.5 and 7.2 months, respectively, with HR = 0.59 (95%CI 0.39-0.88, p = 0.009). The median OS (mOS) in the TRT group was also significantly longer than that in the non-TRT group (24.1 months vs. 18.5 months, HR = 0.53, 95%CI 0.31-0.89, p = 0.016). Multivariable analysis showed that baseline liver metastasis and the number of metastases ≥ 3 were independent prognostic factors for OS. Addition of TRT increased the incidence of treatment-related pneumonia (p = 0.018), most of which were grade 1-2. CONCLUSIONS: Addition of TRT to durvalumab or atezolizumab plus chemotherapy significantly improves survival in ES-SCLC. Although it may leads to increased incidence of treatment-related pneumonia, a majority of the cases can be relieved after symptomatic treatment.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/radioterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Inibidores de Checkpoint Imunológico/uso terapêutico
6.
J Hazard Mater ; 455: 131527, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37163892

RESUMO

Nitrate is a significant constituent of the total nitrogen pool in shallow aquifers and poses an escalating threat to groundwater resources, making it crucial to comprehend the source, conversion, and elimination of nitrogen using appropriate techniques. Although dual-isotope dynamics in nitrate have been widely used, uncertainties remain regarding the asynchronously temporal changes in δ18O-NO3- and δ15N-NO3- observed in hypoxic aquifers. This study aimed to investigate changes in nitrogen sources and transformations using temporal changes in field-based NO3- isotopic composition, hydro-chemical variables, and environmental DNA profiling, as the groundwater table varied. The results showed that the larger enrichment in δ18O-NO3- (+13‰) compared with δ15N-NO3- (-2‰) on average during groundwater table rise was due to a combination of factors, including high 18O-based atmospheric N deposition, canopies nitrification, and soil nitrification transported vertically by rainfalls, and 18O-enriched O2 produced through microbial and root respiration within denitrification. The strong association between functional gene abundance and nitrogen-related indicators suggests that anammox was actively processed with nitrification but in small bacterial population during groundwater table rise. Furthermore, bacterial species associated with nitrogen-associated gradients provided insight into subsurface nitrogen transformation, with Burkholderiaceae species and Pseudorhodobacter potentially serving as bioindicators of denitrification, while Candidatus Nitrotogn represents soil nitrification. Fluctuating groundwater tables can cause shifts in hydro-chemical and isotopic composition, which in turn can indicate changes in nitrogen sources and transformations. These changes can be used to improve input sources for mixture models and aid in microbial remediation of nitrate.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Nitrogênio/análise , Nitratos/análise , Isótopos de Nitrogênio/análise , Isótopos de Oxigênio/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/química , Solo/química , China
7.
Environ Sci Pollut Res Int ; 30(21): 60694-60703, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37037935

RESUMO

Efficient removal of 4-aminophenylarsonic acid from contaminated water sources is essential to mitigate arsenic pollution. We proposed a competent technique to achieve 4-aminophenylarsonic acid removal via adsorption on enhanced α-FeOOH using various concentrations of Mn(VII). The elimination rate of 4-aminophenylarsonic acid applying FeOOH with Mn(VII) was dependent on acidic conditions. More than 99.9% of 4-aminophenylarsonic acid was eliminated in a 6-min reaction time under acidic conditions. The reaction of 4-aminophenylarsonic acid was fast at 4.0 and 5.0 pH, with its complete oxidation into arsenate and the liberation of manganese Mn(II) in the initial stage of the reaction. Similarly, the reaction rate constant (kobs) decreased from 0.7048 ± 0.02 to 0.00155 ± 0.00007 as the pH increased from 4.0 to 9.0. Oxidation capacity was considerably enhanced via the removal of electrons from 4-aminophenylarsonic acid to Mn(VII) after the creation of its radical intermediate and further change in Mn(III) to Mn(II) in the solution. The results showed that Mn(VII) played a crucial role in 4-aminophenylarsonic acid degradation at a low pH (e.g., 4.0), and the oxidation process proceeded in different manners, namely, electron transfer, hydroxylation, and ring-opening. These results illustrated that Mn(VII) is an effective, economic purification process to mitigate 4-aminophenylarsonic acid generated from poultry waste.


Assuntos
Óxidos , Poluentes Químicos da Água , Compostos de Manganês , Água , Oxirredução , Manganês
8.
Cancer Lett ; 559: 216108, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36863506

RESUMO

The clinical benefits of immunotherapy are proven in many cancers, but a significant number of patients do not respond well to immunotherapy. The tumor physical microenvironment (TpME) has recently been shown to affect the growth, metastasis and treatment of solid tumors. The tumor microenvironment (TME) has unique physical hallmarks: 1) unique tissue microarchitecture, 2) increased stiffness, 3) elevated solid stress, and 4) elevated interstitial fluid pressure (IFP), which contribute to tumor progression and immunotherapy resistance in a variety of ways. Radiotherapy, a traditional and powerful treatment, can remodel the matrix and blood flow associated with the tumor to improve the response rate of immune checkpoint inhibitors (ICIs) to a certain extent. Herein, we first review the recent research advances on the physical properties of the TME and then explain how TpME is involved in immunotherapy resistance. Finally, we discuss how radiotherapy can remodel TpME to overcome immunotherapy resistance.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Imunoterapia , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico
9.
Sci Total Environ ; 873: 162415, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36822415

RESUMO

The water balance budget in remote plateau lakes provides a fundamental information on the local climate-hydrological pattern. However, integrated investigation on the waters entering the lake, especially groundwater, was limited. To assess the current climate stress on Yunnan-Guizhou Plateau lakes, we collected rivers, groundwater, lake, and precipitation with varying isotopic compositions in the Chenghai Lake basin over four separate campaigns during a hydrological year. The wide and enriched variation of isotope composition in rivers, groundwater, and lake indicate that they have undergone distinct evaporations, which further reveal the recharging and mixing processes. Based on the similar isotopic signals between rivers and precipitation, rivers can serve as proxies for precipitation. Groundwater was primarily replenished by high mountain precipitation duo to the stable isotopic values in aquifers. Even through mass water in lake was able to smooth out some variability, the considerable isotopic variation of lake during the four collections suggested the influence of meteorological conditions. According to the assessment of isotope balance model, lake evaporation accounts for almost 65 % of the total inflow for one year, which partially explains the climate stress on the lake level. As the most sensitive variables, changes in relative humidity (h) and isotope composition of atmospheric moisture (δA) resulted in remarkable variations in E/I ratios and the constructed water isotope framework. These results shed light on the capacity of evaporation relative to lake input and provide interpretations on local paleoclimate and predicted-climate construction.

10.
Environ Sci Pollut Res Int ; 30(7): 19224-19233, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36227491

RESUMO

In this study, poly(acrylic acid) sodium (PAA-Na) salt was selected as representative polymer additive and the effect on forward osmosis (FO) performance of traditional draw solute NaCl was investigated. Results showed that PAA-Na increased water flux in both FO and PRO mode at 25 °C (up to 50%). Water flux and specific RSF firstly increased and then kept stable with the increasing concentration of PAA-Na additive. However, PAA-Na cannot enhance water permeation effectively at 35 and 45 °C. PAA-Na influenced FO performance by (1) increasing membrane hydrophilicity, which can increase water permeation, and was dominant at low temperature, and (2) causing pore-clogging, leading water flux decline, which was significant at high temperature. Furthermore, the influence of PAA-Na was compared with another polymer PAM and divalent salts MgCl2. The addition of PAM increased water flux slightly (lower than 25%), but increased RSF at the same time, due to the negative charge. Although MgCl2 decreased RSF and kept water flux fixed, its role was not obvious. In all, PAA-Na had advantages to improve FO performance.


Assuntos
Sódio , Purificação da Água , Purificação da Água/métodos , Cloreto de Sódio , Resinas Acrílicas , Água , Osmose , Membranas Artificiais
11.
Environ Pollut ; 316(Pt 2): 120659, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36379289

RESUMO

Dam construction has far-reaching impacts on pollutant accumulation and the pollutant-induced quality of aquatic environments. Nonetheless, its large-scale effects on pollutant distribution in sediments, which greatly contribute to the environmental impacts of coexisting pollutants, remain poorly understood. We collected sediments from the Yangtze River during the dry and normal seasons (with 'normal' defined in terms of precipitation level), and examined how dam construction alters the spatial trajectories of both inorganic and organic pollutants in the sediments. Sediment composition exhibited linear variation from the upper to the lower reaches, with clay and silt particles dominating the sediment in the Three Gorges Reservoir and sand particles dominating in the middle-lower reaches. Accordingly, upstream of the Three Gorges Dam (TGD), sedimentary carbon, nitrogen, phosphorus, heavy metal, polycyclic aromatic hydrocarbons (PAHs), and oxygenated PAHs (OPAHs) contents increased toward the TGD owing to its regulation of the spatial variation in sediment particle size. The TGD caused upstream sedimentary accumulation of pollutants to be higher nearer to the TGD than in the upper reaches by 17%-129% for carbon, nitrogen, and phosphorus, 7%-51% for heavy metals, 30% for PAHs, and 140% for OPAHs. Pollutant content was sharply lower below the TGD, by 0.58-11.15 times for carbon, nitrogen, and phosphorus, 0.1-2.6 times for heavy metals, 1.7 times for PAHs, and 5.6 times for OPAHs. Upstream of the TGD, levels of NH4+-N, the main form of N in the interstitial water of the Yangtze River, increased lineary toward the TGD, whereas those of NO3--N and NO2--N decreased. Sedimentary organic matter source contributions were consistent along the Yangtze River, being on an average 46% for C3 plants and 28% for soil organic substances, further confirming the dam's regulatory effect on pollutants. These findings provide a foundation for future assessments of the environmental impact of dam-induced river fragmentation and hydrological alterations, and for developing advanced watershed pollutant management strategies.


Assuntos
Poluentes Ambientais , Metais Pesados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Rios , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Fósforo , Nitrogênio , Carbono , China , Sedimentos Geológicos
12.
Water Res ; 226: 119248, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323200

RESUMO

Microplastics (MPs) can adsorb antibiotics to form complex pollutants, which seriously threatens the health of freshwater ecosystems. Few studies have examined the combined pollution characteristics of microplastics (MPs) and antibiotics in restored freshwater ecosystems and their effects on the growth traits of the aquatic primary producers. We studied both the ecotoxicological effects of polyethylene (PE) MPs and the antibiotics sulfanilamide (sulfa, SA) on the structural (diversity etc.,) and functional (nutrient cycling etc.,) properties of water-plant-sediment ecosystems. The synergistic toxic effects of PE and SA resulted in a reduction in the chlorophyll content and chloroplast fluorescence. Meanwhile, PE and SA single/combined pollution stress inhibits the radial oxygen loss in roots, and activates the antioxidant defense system in leaves. The change in the growth response characteristics of Vallisneria natans (V. natans) under oxidative stress induced by single/combined pollution showed a dosage effect. The microbial compositions of the overlying water and sediment were significantly changed by the pollution exposure, as evidenced by the increased microbial diversity and altered microbial taxa distribution. An increase in the total concentrations of sulfa in the overlying water was accompanied by an increase in the relative abundances of resistance genes. PE-MPs significantly affected the removal of total nitrogen and antibiotics from the overlying water. The interaction between PE and SA affects ammonia and nitrite nitrogen exchange in water-sediment systems. Thus, this study investigated the effects of combined MP and antibiotics pollution on the growth state, metabolic function, microbial community structure and microbial diversity of the freshwater ecosystems. The mechanism underlying of the combined polyethylene-sulfanilamide (PE-SA) effect on the V. natans was revealed. In addition, the correlation between different environmental factors was analyzed, and a structural equation model was constructed. This study provides primary data for evaluating the ecological and environmental effects of combined PE-SA pollution and its possible risks. Moreover, it provides a reference index for the study of ecological wetland environments and phytoremediation.


Assuntos
Hydrocharitaceae , Poluentes Químicos da Água , Microplásticos , Ecossistema , Plásticos , Antibacterianos , Poluentes Químicos da Água/análise , Água Doce , Polietileno , Nitrogênio , Água , Sulfanilamidas
13.
Water Res ; 227: 119339, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36371921

RESUMO

Constructed wetlands (CWs) are an important barrier to prevent nanoplastics (NPs) and microplastics (MPs) from entering receiving streams. However, little is known about how the accumulation of NPs affects the growth, photosynthesis, oxidative stress responses, and metabolism of plants, especially submerged plants that are widely used in CWs for water purification. Herein, we adopted Utricularia vulgaris (U. vulgaris), a typical submerged macrophyte as the model plant to address the above knowledge gaps under exposure to polystyrene NPs (PS-NPs, 500 nm, 0∼10 mg·L-1). Results showed that PS-NPs were absorbed by insect traps and further transported to stems and leaves of U. vulgaris, which limited plant height (6.8∼72.9%), relative growth rate (7.4∼17.2%), and photosynthesis (3.7∼28.2%). U. vulgaris suffered from oxidative stresses, as evidenced by the increase in malondialdehyde, antioxidant enzymes (catalase, peroxidase, and superoxide dismutase), and H2O2, especially under 1 and 10 mg·L-1. Abundances of 548 metabolites were quantified, and 291 metabolites were detected with altered levels after exposure, in which 25∼34% metabolites were up-regulated, and 32∼40% metabolites were down-regulated in metabolite expression. Metabolic pathways of the tricarboxylic acid cycle and amino acid were disrupted, in which citric acid, threonine, and adenine decreased, while amino acids (like serine, phenylalanine, histidine, etc.) increased first and then decreased with increasing PS-NPs concentrations. Moreover, PS-NPs reduced the removal efficiency of total nitrogen and phosphorus from water by U. vulgaris, bringing potential risks to aquatic ecosystems. These findings have greatly enhanced our understanding of the metabolic mechanisms and interactions of aquatic macrophytes that are heavily used in CWs in response to NPs stress, as well as the impact of NPs on CWs functioning.


Assuntos
Microplásticos , Poluentes Químicos da Água , Áreas Alagadas , Plásticos , Ecossistema , Peróxido de Hidrogênio , Poluentes Químicos da Água/análise , Estresse Oxidativo
14.
Front Psychol ; 13: 979412, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312189

RESUMO

This study aims to reveal the impact of proactive personality on career success (i.e., subjective career success, salary, and promotion) and the sequential mediation effect of organizational citizenship behavior (OCB) and task performance on the relationship. Utilizing meta-analytic structural equation modeling (MASEM) technology sampling 101,131 employees from multiple organizations and industries, which deeply decreased sampling error, the results indicated slightly different findings of proactive personality and three types of career success. Specifically, in relation to salary, OCB and task performance independently transmit the effects of proactive personality to subjective career success, but they sequentially mediate this link as well. In regard to subjective career success and promotion, OCB (but not task performance) mediates the relationship between proactive personality and promotion. OCB and task performance sequentially mediate these links. We discussed findings cautiously and purpose future research directions.

15.
Biology (Basel) ; 11(7)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-36101456

RESUMO

The Tongbai Mountains are an ecologically sensitive region to climate change, where there lies a climatic transitional zone from a subtropical to a warm−temperate monsoon climate. The northern boundary of Pinus taiwanensis Hayata is here; thus, climate information is well recorded in its tree rings. Based on developed earlywood width (EWW), latewood width (LWW) and total ring width (RW) chronologies (time period: 1887−2014 year) of Pinus taiwanensis Hayata in the Tongbai Mountains in central China, this paper analyzed characteristics of these chronologies and correlations between these chronologies and climate factors. The correlation results showed that earlywood width chronology contains more climate information than latewood width chronology and total ring width chronology, and mean temperature and mean maximum temperature in May−June were the main limiting factors for radial growth of Pinus taiwanensis Hayata. The highest significant value in all correlation analyses is −0.669 (p < 0.05) between earlywood width chronology and May−June mean temperature (TMJ) in the pre-mutation period (1958−2005) based on mutating in 2006. Thus, this paper reconstructed May−June mean temperature using earlywood width chronology from 1901 to 2005 (reliable period of earlywood width chronology is 1901−2014). The reconstructed May−June mean temperature experienced eight warmer periods and eight colder periods and also showed 2−3a cycle change over the past 105 years. The spatial correlation showed that the reconstructed series was representative of the May−June mean temperature variation in central and eastern China and significant positive/negative correlation with the sea surface temperature (SST) of the subtropical Pacific Ocean and the tropical Western Pacific Ocean and Indian Ocean from the previous October to the current June. This also indicated that May−June mean temperature periodic fluctuations might be related to the quasi-biennial oscillation (QBO) in the tropical Western Pacific Ocean and Indian Ocean. The results of this study have extended and supplemented the meteorological records of the Tongbai Mountains and have a guiding significance for forest tending and management in this area.

16.
Sci Total Environ ; 850: 157851, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35934038

RESUMO

The rapid spread of coronavirus disease 2019 has increased the consumption of some antiviral drugs, wherein these are discharged into wastewater, posing risks to the ecosystem and human health. Therefore, efforts are being made for the development of advanced oxidation processes (AOPs) to remediate water containing these pharmaceuticals. Here, the toxicity evolution of the antiviral drug ribavirin (RBV) was systematically investigated during its degradation via the UV/TiO2/H2O2 advanced oxidation process. Under optimal conditions, RBV was almost completely eliminated within 20 min, although the mineralization rate was inadequate. Zebrafish embryo testing revealed that the ecotoxicity of the treated RBV solutions increased at some stages and decreased as the reaction time increased, which may be attributed to the formation and decomposition of various transformation products (TPs). Liquid chromatography-mass spectrometry analysis along with density functional theory calculations helped identify possible toxicity increase-causing TPs, and quantitative structure activity relationship prediction revealed that most TPs exhibit higher toxicity than the parent compound. The findings of this study suggest that, in addition to the removal rate of organics, the potential ecotoxicity of treated effluents should also be considered when AOPs are applied in wastewater treatment.


Assuntos
COVID-19 , Poluentes Químicos da Água , Purificação da Água , Animais , Antivirais/análise , Antivirais/toxicidade , Ecossistema , Humanos , Peróxido de Hidrogênio/química , Oxirredução , Preparações Farmacêuticas , Ribavirina/toxicidade , Raios Ultravioleta , Águas Residuárias/química , Água/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Peixe-Zebra
17.
Biochem Cell Biol ; 100(3): 223-235, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35833632

RESUMO

Cigarette smoke (CS) is a risk factor for chronic obstructive pulmonary disease (COPD), which can exacerbate inflammation and oxidative stress. Pristimerin (Pris) is a natural compound with antioxidant and anti-inflammatory effects. We managed to evaluate the protective effects of Pris on CS-induced COPD. The CS-induced COPD mice model and cell model were constructed. The effects of Pris treatment on lung function, inflammatory cell infiltration, myeloperoxidase (MPO), and pathological changes of lung tissues in mice model were evaluated. The impacts of Pris treatment on inflammatory factors, chemokines, and oxidative stress parameters in mice lung tissues and cells were determined by kits. The viability of human bronchial epithelial cells after Pris treatment was tested by CCK-8. The activation of NF-κB pathway was confirmed by Western blot and immunofluorescence. CS treatment impaired lung function, reduced weight of mice, and enhanced inflammatory cell infiltration, MPO, and lung tissue damage, but these effects of CS were reversed by Pris treatment. Furthermore, Pris treatment downregulated the levels of malondialdehyde, IL-6, IL-1ß, TNF-α, CXCL1, and CXLC2, but upregulated superoxide dismutase and catalase levels. Pris treatment could overturn CS-induced activation of the NF-κB pathway. Pris alleviates CS-induced COPD by inactivating NF-κB pathway.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Animais , Fumar Cigarros/efeitos adversos , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Pulmão/metabolismo , Camundongos , NF-kappa B/metabolismo , Triterpenos Pentacíclicos , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Nicotiana/metabolismo
18.
Pestic Biochem Physiol ; 184: 105102, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35715041

RESUMO

Protoporphyrinogen oxidase (PPO, EC 1.3.3.4) is a significant target for the discovery of novel bleaching herbicides. Starting from the active fragments of several known commercial herbicides, a series of PPO inhibitors with diphenyl ether scaffolds were designed and synthesized by substructure splicing and bioisosterism methods. The greenhouse herbicidal activity and the PPO inhibitory activity in vitro were measured. The results showed that the novel synthesized compounds have good PPO inhibitory activity, and the IC50 value against corn PPO ranges from 0.032 ± 0.008 mg/L to 3.245 ± 0.247 mg/L. Among all target compounds, compound P2 showed the best herbicidal activity, with a half inhibitory concentration (IC50) of 0.032 ± 0.008 mg/L. In addition, the molecular docking results showed that the benzene ring part of compound P2 can form a π-π stacking with PHE-392, and the trifluoromethyl group and ARG-98 form two hydrogen bonds. Crop safety experiments and cumulative concentration analysis experiments indicated that compound P2 can be used for weed control in rice, wheat, soybean and corn. Therefore, compound P2 can be selected to develop potential lead compounds for novel PPO inhibitors.


Assuntos
Inibidores Enzimáticos , Herbicidas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Herbicidas/química , Herbicidas/farmacologia , Simulação de Acoplamento Molecular , Protoporfirinogênio Oxidase , Relação Estrutura-Atividade
19.
Biology (Basel) ; 11(5)2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35625481

RESUMO

Tree ring data from the southern boundary of Chinese Pine (Pinus tabulaeformis Carr.) distribution where is the southern warm temperate margin, the paper analyzes the response of climate factors along north-south direction to tree growth. The results show that temperature and precipitation in May-June and relative moisture from March to June are main limiting factors on trees growth; however, the temperature in the south of the mountains and the moisture in the north of the mountains have relatively greater influence on trees' growth. Additionally, we also found that the regional scPDSIMJ (that is scPDSI in May-June) was the most significant and stable factor limiting tree growth to be used for reconstruction. The reconstructed scPDSIMJ revealed that there were 29 extremely dry years and 30 extremely wet years during 1801-2016, and it could represent the drought variation in central and eastern monsoon region. The variation exists in good agreement with the reconstructed PDSI for Mt. Shennong and the drought/wetness series in Zhengzhou. Further research found that the droughts of May-June in central China were mainly impacted by local temperature and moisture (including precipitation, soil moisture, potential evaporation and water pressure), and then by the northern Pacific Ocean and the northern Atlantic Ocean. These results may provide better understanding of May-June drought variation and service for agricultural production in central China.

20.
Front Psychol ; 13: 794913, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35282256

RESUMO

Previous studies only considered the impact of personal or environmental factors on intensive smartphone use separately, while largely ignoring the impact of person-environment (P-E) fit on it. Drawing on the P-E fit theory, we proposed that perceived overqualification (POQ), an indicator of person-job misfit, positively affects intensive smartphone use via job boredom, and affective commitment moderates this indirect effect. We examined our hypotheses using four-wave time-lag data of 450 workers from 62 teams. The results revealed that POQ raised job boredom of an individual and thus increased their intensive smartphone use. In addition, when the affective commitment was high, the indirect effect from POQ to intensive smartphone use via job boredom was weaker. The implications, limitations, and future directions of this research were discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA