Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.535
Filtrar
1.
Cardiovasc Diabetol ; 23(1): 150, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702777

RESUMO

BACKGROUND: Vasculopathy is the most common complication of diabetes. Endothelial cells located in the innermost layer of blood vessels are constantly affected by blood flow or vascular components; thus, their mechanosensitivity plays an important role in mediating vascular regulation. Endothelial damage, one of the main causes of hyperglycemic vascular complications, has been extensively studied. However, the role of mechanosensitive signaling in hyperglycemic endothelial damage remains unclear. METHODS: Vascular endothelial-specific Piezo1 knockout mice were generated to investigate the effects of Piezo1 on Streptozotocin-induced hyperglycemia and vascular endothelial injury. In vitro activation or knockdown of Piezo1 was performed to evaluate the effects on the proliferation, migration, and tubular function of human umbilical vein endothelial cells in high glucose. Reactive oxygen species production, mitochondrial membrane potential alternations, and oxidative stress-related products were used to assess the extent of oxidative stress damage caused by Piezo1 activation. RESULTS: Our study found that in VECreERT2;Piezo1flox/flox mice with Piezo1 conditional knockout in vascular endothelial cells, Piezo1 deficiency alleviated streptozotocin-induced hyperglycemia with reduced apoptosis and abscission of thoracic aortic endothelial cells, and decreased the inflammatory response of aortic tissue caused by high glucose. Moreover, the knockout of Piezo1 showed a thinner thoracic aortic wall, reduced tunica media damage, and increased endothelial nitric oxide synthase expression in transgenic mice, indicating the relief of endothelial damage caused by hyperglycemia. We also showed that Piezo1 activation aggravated oxidative stress injury and resulted in severe dysfunction through the Ca2+-induced CaMKII-Nrf2 axis in human umbilical vein endothelial cells. In Piezo1 conditional knockout mice, Piezo1 deficiency partially restored superoxide dismutase activity and reduced malondialdehyde content in the thoracic aorta. Mechanistically, Piezo1 deficiency decreased CaMKII phosphorylation and restored the expression of Nrf2 and its downstream molecules HO-1 and NQO1. CONCLUSION: In summary, our study revealed that Piezo1 is involved in high glucose-induced oxidative stress injury and aggravated endothelial dysfunction, which have great significance for alleviating endothelial damage caused by hyperglycemia.


Assuntos
Glicemia , Diabetes Mellitus Experimental , Células Endoteliais da Veia Umbilical Humana , Canais Iônicos , Camundongos Knockout , Óxido Nítrico Sintase Tipo III , Estresse Oxidativo , Animais , Humanos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Diabetes Mellitus Experimental/metabolismo , Canais Iônicos/metabolismo , Canais Iônicos/genética , Glicemia/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Mecanotransdução Celular , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/deficiência , Células Cultivadas , Proliferação de Células , Apoptose , Masculino , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/fisiopatologia , Angiopatias Diabéticas/patologia , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/etiologia , Movimento Celular , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Aorta Torácica/fisiopatologia , Camundongos , Estreptozocina , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Endotélio Vascular/patologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética
2.
J Cell Mol Med ; 28(9): e18321, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38712979

RESUMO

As a main extraction compound from Scutellaria baicalensis Georgi, Baicalin exhibits various biological activities. However, the underlying mechanism of Baicalin on hypertension-induced heart injury remains unclear. In vivo, mice were infused with angiotensin II (Ang II; 500 ng/kg/min) or saline using osmotic pumps, followed by intragastrically administrated with Baicalin (5 mg/kg/day) for 4 weeks. In vitro, H9C2 cells were stimulated with Ang II (1 µM) and treated with Baicalin (12.5, 25 and 50 µM). Baicalin treatment significantly attenuated the decrease in left ventricular ejection fraction and left ventricular fractional shortening, increase in left ventricular mass, left ventricular systolic volume and left ventricular diastolic volume of Ang II infused mice. Moreover, Baicalin treatment reversed 314 differentially expressed transcripts in the cardiac tissues of Ang II infused mice, and enriched multiple enriched signalling pathways (including apoptosis, autophagy, AMPK/mTOR signalling pathway). Consistently, Baicalin treatment significantly alleviated Ang II-induced cell apoptosis in vivo and in vitro. Baicalin treatment reversed the up-regulation of Bax, cleaved-caspase 3, cleaved-caspase 9, and the down-regulation of Bcl-2. Meanwhile, Baicalin treatment alleviated Ang II-induced increase of autophagosomes, restored autophagic flux, and down-regulated LC3II, Beclin 1, as well as up-regulated SQSTM1/p62 expression. Furthermore, autophagy inhibitor 3-methyladenine treatment alleviated the increase of autophagosomes and the up-regulation of Beclin 1, LC3II, Bax, cleaved-caspase 3, cleaved-caspase 9, down-regulation of SQSTM1/p62 and Bcl-2 expression after Ang II treated, which similar to co-treatment with Baicalin. Baicalin treatment reduced the ratio of p-AMPK/AMPK, while increased the ratio of p-mTOR/mTOR. Baicalin alleviated Ang II-induced cardiomyocyte apoptosis and autophagy, which might be related to the inhibition of the AMPK/mTOR pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Angiotensina II , Apoptose , Autofagia , Flavonoides , Miócitos Cardíacos , Transdução de Sinais , Serina-Treonina Quinases TOR , Flavonoides/farmacologia , Animais , Autofagia/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Linhagem Celular , Ratos
3.
J Fluoresc ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717650

RESUMO

Due to the unique chemical and biomedical properties of carbon dots (CDs), they have increasingly obtained the attention in many research fields, for example, bioimaging, fluorescence sensing, and drug delivery, etc. Recently, it was found that, under light excitation, CDs can also be exploited as a novel photosensitizer to prepare reactive oxygen species (ROS), which expand their applications in the field of photodynamic therapy for cancer treatment. Nevertheless, the high cost and complex fabrication approach of CDs significantly limit their applications. To address this issue, bottom-up routes usually utilize sustainable and inexpensive carbon precursor as starting materials, employed N,N-dimethylformamide (DMF) or ethanol as an environmental-friendly solvent. Bottom-up approach was energy efficient, and the purification process was relatively simple by dialysis. Therefore, carbon dots (CDs) were facilely fabricated in a one-pot solvothermal process using 1-aminoanthraquinone as a precursor, and their application as photosensitizers for in vitro antitumor cells, especially photodynamic therapy (PDT) was established. Then the photophysical and nanoscale dimensions properties of the fabricated CDs were characterized via TEM, UV-visible, fluorescence, and FT-IR spectroscopy. The synthesized N-doped CDs can easily dissolve in water, possess very low biotoxicity, yellow-light emission (maximum peak at 587 nm). More importantly, PDT studies demonstrated that the obtained CDs possess a high singlet oxygen yield of 35%, and exhibit significant phototoxicity to cancer cells upon 635 nm laser irradiation. These studies highlight that N-doped CDs can be facilely synthesized from only one precursor, and are a potentially novel theranostic agent for in vivo PDT.

4.
World J Pediatr ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713366

RESUMO

BACKGROUND: SARS-CoV-2 continues to mutate over time, and reports on children infected with Omicron BA.5 are limited. We aimed to analyze the specific symptoms of Omicron-infected children and to improve patient care. METHODS: We selected 315 consecutively hospitalized children with Omicron BA.5 and 16,744 non-Omicron-infected febrile children visiting the fever clinic at our hospital between December 8 and 30, 2022. Specific convulsions and body temperatures were compared between the two cohorts. We analyzed potential associations between convulsions and vaccination, and additionally evaluated the brain damage among severe Omicron-infected children. RESULTS: Convulsion rates (97.5% vs. 4.3%, P < 0.001) and frequencies (median: 2.0 vs. 1.6, P < 0.001) significantly differed between Omicron-infected and non-Omicron-infected febrile children. The body temperatures of Omicron-infected children were significantly higher during convulsions than when they were not convulsing and those of non-Omicron-infected febrile children during convulsions (median: 39.5 vs. 38.2 and 38.6 °C, both P < 0.001). In the three Omicron-subgroups, the temperature during convulsions was proportional to the percentage of patients and significantly differed ( P < 0.001), while not in the three non-Omicron-subgroups ( P = 0.244). The convulsion frequency was lower in the 55 vaccinated children compared to the 260 non-vaccinated children (average: 1.8 vs. 2.1, P < 0.001). The vaccination dose and convulsion frequency in Omicron-infected children were significantly correlated ( P < 0.001). Fifteen of the 112 severe Omicron cases had brain damage. CONCLUSIONS: Omicron-infected children experience higher body temperatures and frequencies during convulsions than those of non-Omicron-infected febrile children. We additionally found evidence of brain damage caused by infection with omicron BA.5. Vaccination and prompt fever reduction may relieve symptoms.

5.
BMC Plant Biol ; 24(1): 392, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735932

RESUMO

BACKGROUND: Long-chain acyl-coenzyme A synthetase (LACS) is a type of acylating enzyme with AMP-binding, playing an important role in the growth, development, and stress response processes of plants. RESULTS: The research team identified different numbers of LACS in four cotton species (Gossypium hirsutum, Gossypium barbadense, Gossypium raimondii, and Gossypium arboreum). By analyzing the structure and evolutionary characteristics of the LACS, the GhLACS were divided into six subgroups, and a chromosome distribution map of the family members was drawn, providing a basis for further research classification and positioning. Promoter cis-acting element analysis showed that most GhLACS contain plant hormones (GA, MeJA) or non-biological stress-related cis-elements. The expression patterns of GhLACS under salt stress treatment were analyzed, and the results showed that GhLACS may significantly participate in salt stress response through different mechanisms. The research team selected 12 GhLACSs responsive to salt stress for tissue expression analysis and found that these genes are expressed in different tissues. CONCLUSIONS: There is a certain diversity of LACS among different cotton species. Analysis of promoter cis-acting elements suggests that GhLACS may be involved in regulating plant growth, development and stress response processes. GhLACS25 was selected for in-depth study, which confirmed its significant role in salt stress response through virus-induced gene silencing (VIGS) and induced expression in yeast cells.


Assuntos
Gossypium , Proteínas de Plantas , Estresse Salino , Gossypium/genética , Gossypium/fisiologia , Estresse Salino/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Família Multigênica , Filogenia , Regiões Promotoras Genéticas/genética , Genoma de Planta , Genes de Plantas
6.
Nanomaterials (Basel) ; 14(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38727393

RESUMO

Terahertz (THz) sensors have attracted great attention in the biological field due to their nondestructive and contact-free biochemical samples. Recently, the concept of a quasi-bound state in the continuum (QBIC) has gained significant attention in designing biosensors with ultrahigh sensitivity. QBIC-based metasurfaces (MSs) achieve excellent performance in various applications, including sensing, optical switching, and laser, providing a reliable platform for biomaterial sensors with terahertz radiation. In this study, a structure-engineered THz MS consisting of a "double C" array has been designed, in which an asymmetry parameter α is introduced into the structure by changing the length of one subunit; the Q-factor of the QBIC device can be optimized by engineering the asymmetry parameter α. Theoretical calculation with coupling equations can well reproduce the THz transmission spectra of the designed THz QBIC MS obtained from the numerical simulation. Experimentally, we adopt an MS with α = 0.44 for testing arginine molecules. The experimental results show that different concentrations of arginine molecules lead to significant transmission changes near QBIC resonant frequencies, and the amplitude change is shown to be 16 times higher than that of the classical dipole resonance. The direct limit of detection for arginine molecules on the QBIC MS reaches 0.36 ng/mL. This work provides a new way to realize rapid, accurate, and nondestructive sensing of trace molecules and has potential application in biomaterial detection.

7.
iScience ; 27(6): 109865, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770132

RESUMO

Previous studies have indicated the neuroprotective effect of olfactory mucosa mesenchymal stem cells (OM-MSCs) on brain injury. Intracerebral hemorrhage (ICH) models were established in rats by injecting autologous blood. SENP1 expression was enhanced in neurons but decreased in astrocytes compared to that in OM-MSCs. Overexpression of SENP1 promoted the proliferation and neuronal differentiation, while inhibiting the astrocytic differentiation of OM-MSCs. Conversely, its knockdown had the opposite effect. Moreover, OM-MSCs reduced neurological dysfunction in rats after ICH, and the neuroprotective effect of OM-MSCs could be further enhanced by SENP1 overexpression. In addition, SENP1 promoted mitophagy, which might be related to SENP1-mediated OPTN deSUMOylation. Furthermore, SENP1 promoted neuronal differentiation of OM-MSCs through mitophagy mediated by OPTN. Similar to SENP1, OPTN transfection further enhanced the remission effect of OM-MSC on ICH rats. SENP1 promoted neuronal differentiation of OM-MSCs through OPTN-mediated mitophagy to improve neurological deficits in ICH rats.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38766766

RESUMO

The blood-brain barrier (BBB) plays a critical role in the development and outcome of subarachnoid hemorrhage (SAH). This study focuses on the potential mechanism by which GPR30 affects the BBB after SAH. A rat SAH model was established using an intravascular perforation approach. G1 (GPR30 agonist) was administered to investigate the mechanism of BBB damage after SAH. Brain water content, western blotting, Evans blue leakage, and immunofluorescence staining were performed. Brain microvascular endothelial cells were induced by hemin to establish SAH model in vitro. By adding LY294002 (a PI3K blocker) and ZnPP IX (an HO-1 antagonist), the mechanism of improving BBB integrity through the activation of GPR30 was studied. In vivo, GPR30 activation improved BBB disruption, as evidenced by decreased cerebral edema, downregulated Albumin expression, and reduced extravasation of Evans blue and lgG after G1 administration in SAH rats. Moreover, SAH downregulated the levels of tight junction (TJ) proteins, while treatment with G1 reversed the effect of SAH. The protective effect of G1 on BBB integrity in vitro was consistent with that in vivo, as evidenced by G1 reducing the impact of hemin on TEER value, dextran diffusivity, and TJ protein levels in brain microvascular endothelial cells. In addition, G1 activated the PI3K/AKT and Nrf2/HO-1 pathways both in vivo and in vitro. Furthermore, the administration of LY294002 and ZnPP IX partially reversed the protective effect of G1 on BBB integrity in hemin-stimulated cells. These findings provide valuable insights for potential treatments for SAH. NEW & NOTEWORTHY We demonstrated that the activation of GPR30, at least partly through the PI3K/AKT and Nrf2/HO-1 pathways, alleviated BBB damage both in vivo and in vitro. This study introduced a novel therapeutic approach for protecting the BBB after SAH.

9.
Blood ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38574321

RESUMO

Platelet α-granules are rich in TGF-ß1 which is associated with myeloid-derived suppressor cell (MDSC) biology. Responders to thrombopoietin receptor agonists (TPO-RAs) revealed a parallel increase in the number of both platelets and MDSCs. Here, anti-CD61 immune-sensitized splenocytes were transferred into severe combined immunodeficient mice to establish an active murine model of immune thrombocytopenia (ITP). Subsequently, we demonstrated that TPO-RAs augmented the inhibitory activities of MDSCs by arresting plasma cells differentiation, reducing Fas ligand expression on cytotoxic T cells, and re-balancing T cell subsets. Mechanistically, transcriptome analysis confirmed the participation of TGF-ß/Smad pathways in TPO-RA-corrected-MDSCs, which was offset by Smad2/3 knockdown. In platelet TGF-ß1-deficient mice, TPO-RA-induced amplification and enhanced suppressive capacity of MDSCs was waived. Furthermore, our retrospective data revealed that ITP patients achieving complete platelet response showed superior long-term outcomes compared with those who only reach partial response. In conclusion, we demonstrate that platelet TGF-ß1 induces the expansion and functional reprogramming of MDSCs via the TGF-ß/Smad pathway. These data indicate that platelet recovery not only serves as an endpoint of treatment response, but also paves the way for immune homeostasis in immune-mediated thrombocytopenia.

10.
J Econ Entomol ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38603566

RESUMO

Whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is a destructive insect pest of many crops. Rickettsia infection in different cryptic species of B. tabaci has been observed worldwide. Understanding the interactions between these 2 organisms is critical to developing Rickettsia-based strategies to control B. tabaci and thereby reduce the transmission of related vector-borne viruses. In this study, we investigated the effects of Rickettsia infection on the biological characteristics of the Middle East Asia Minor 1 (MEAM1) strain of B. tabaci through biological analysis of infected and uninfected individuals. The results of this study suggest that Rickettsia may confer fitness benefits. These benefits include increased fertility, improved survival rates, accelerated development, and resulted in female bias. We also investigated the transcriptomics impact of Rickettsia infection on B. tabaci by performing a comparative RNA-seq analysis of nymphs and adult females, both with and without the infection. Our analysis revealed 218 significant differentially expressed genes (DEGs) in infected nymphs compared to uninfected ones and 748 significant DEGs in infected female adults compared to their uninfected whiteflies. Pathway analysis further revealed that Rickettsia can affect many important metabolic pathways in whiteflies. The results suggest that Rickettsia plays an essential role in energy metabolism, and nutrient synthesis in the B. tabaci MEAM1, and depends on metabolites obtained from the host to ensure its survival. Overall, our findings suggest that Rickettsia has beneficial effects on B. tabaci and offered insights into the potential molecular mechanisms governing the interactions between Rickettsia and B. tabaci MEAM1.

11.
Int J Surg ; 110(4): 1896-1903, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38668654

RESUMO

BACKGROUND: It is unclear whether laparoscopic hepatectomy (LH) for hepatolithiasis confers better clinical benefit and lower hospital costs than open hepatectomy (OH). This study aim to evaluate the clinical and economic value of LH versus OH. METHODS: Patients undergoing OH or LH for primary hepatolithiasis at Yijishan Hospital of Wannan Medical College between 2015 and 2022 were divided into OH group and LH group. Propensity score matching (PSM) was used to balance the baseline data. Deviation-based cost modelling and weighted average median cost (WAMC) were used to assess and compare the economic value. RESULTS: A total of 853 patients were identified. After exclusions, 403 patients with primary hepatolithiasis underwent anatomical hepatectomy (OH n=143; LH n=260). PSM resulted in 2 groups of 100 patients each. Although LH required a longer median operation duration compared with OH (285.0 versus 240.0 min, respectively, P<0.001), LH patients had fewer wound infections, fewer pre-discharge overall complications (26 versus 43%, respectively, P=0.009), and shorter median postoperative hospital stays (8.0 versus 12.0 days, respectively, P<0.001). No differences were found in blood loss, major complications, stone clearance, and mortality between the two matched groups. However, the median overall hospital cost of LH was significantly higher than that of OH (CNY¥52,196.1 versus 45,349.5, respectively, P=0.007). Although LH patients had shorter median postoperative hospital stays and fewer complications than OH patients, the WAMC was still higher for the LH group than for the OH group with an increase of CNY¥9,755.2 per patient undergoing LH. CONCLUSION: The overall clinical benefit of LH for hepatolithiasis is comparable or even superior to that of OH, but with an economic disadvantage. There is a need to effectively reduce the hospital costs of LH and the gap between costs and diagnosis-related group reimbursement to promote its adoption.


Assuntos
Hepatectomia , Laparoscopia , Pontuação de Propensão , Humanos , Hepatectomia/economia , Hepatectomia/métodos , Feminino , Masculino , Laparoscopia/economia , Laparoscopia/métodos , Pessoa de Meia-Idade , Adulto , Estudos Retrospectivos , Hepatopatias/cirurgia , Hepatopatias/economia , Estudos de Coortes , Idoso , Litíase/cirurgia , Litíase/economia , Tempo de Internação/economia , Tempo de Internação/estatística & dados numéricos , Complicações Pós-Operatórias/economia , Resultado do Tratamento
12.
Biomed Pharmacother ; 174: 116541, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565063

RESUMO

BACKGROUND: Hypertension, a highly prevalent chronic disease, is known to inflict severe damage upon blood vessels. In our previous study, isoliensinine, a kind of bibenzyl isoquinoline alkaloid which isolated from a TCM named Lotus Plumule (Nelumbo nucifera Gaertn), exhibits antihypertensive and vascular smooth muscle proliferation-inhibiting effects, but its application is limited due to poor water solubility and low bioavailability. In this study, we proposed to prepare isoliensinine loaded by PEG-PLGA polymer nanoparticles to increase its efficacy METHOD: We synthesized and thoroughly characterized PEG-PLGA nanoparticles loaded with isoliensinine using a nanoprecipitation method, denoted as, PEG-PLGA@Isoliensinine. Additionally, we conducted comprehensive investigations into the stability of PEG-PLGA@Isoliensinine, in vitro drug release profiles, and in vivo pharmacokinetics. Furthermore, we assessed the antihypertensive efficacy of this nano-system through in vitro experiments on A7R5 cells and in vivo studies using AngII-induced mice. RESULT: The findings reveal that PEG-PLGA@Isoliensinine significantly improves isoliensinine absorption by A7R5 cells and enhances targeted in vivo distribution. This translates to a more effective reduction of AngII-induced hypertension and vascular smooth muscle proliferation. CONCLUSION: In this study, we successfully prepared PEG-PLGA@Isoliensinine by nano-precipitation, and we confirmed that PEG-PLGA@Isoliensinine surpasses free isoliensinine in its effectiveness for the treatment of hypertension, as demonstrated through both in vivo and in vitro experiments. SIGNIFICANCE: This study lays the foundation for isoliensinine's clinical use in hypertension treatment and vascular lesion protection, offering new insights for enhancing the bioavailability of traditional Chinese medicine components. Importantly, no toxicity was observed, affirming the successful implementation of this innovative drug delivery system in vivo and offers a promising strategy for enhancing the effectiveness of Isoliensinine and propose an innovative avenue for developing novel formulations of traditional Chinese medicine monomers.


Assuntos
Anti-Hipertensivos , Liberação Controlada de Fármacos , Hipertensão , Isoquinolinas , Polietilenoglicóis , Animais , Hipertensão/tratamento farmacológico , Polietilenoglicóis/química , Anti-Hipertensivos/administração & dosagem , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/química , Anti-Hipertensivos/farmacocinética , Masculino , Isoquinolinas/farmacologia , Isoquinolinas/administração & dosagem , Isoquinolinas/química , Isoquinolinas/farmacocinética , Ratos , Camundongos , Nanopartículas/química , Linhagem Celular , Sistemas de Liberação de Fármacos por Nanopartículas/química , Ratos Sprague-Dawley , Portadores de Fármacos/química , Pressão Sanguínea/efeitos dos fármacos , Poliésteres/química
13.
Sci Rep ; 14(1): 9760, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684847

RESUMO

Metallurgical dust and sludge are solid waste resources with recycling value. In recent years, rotary hearth furnace has become the most important means to treat metallurgical dust and sludge because of its wide range of raw materials and strong treatment capacity. In this study blast furnace ash and converter sludge were selected as the research objects, and high-quality metallized pellets were prepared based on the rotary hearth furnace process. The strength changed of pellets, the reduction process of iron oxides and the removal process of zinc during the roasting of pellets in rotary hearth furnace were studied. To explore the reasonable roasting condition for preparing metallized pellets in rotary hearth furnace. The optimum roasting temperature of the pellets was 1250℃ and the roasting time was 25 min. The compressive strength, metallization rate and dezincification rate of metallized pellets reached 1361N, 97.44% and 95.67%, respectively. The efficient resource utilization of various metallurgical dust and sludge is realized.

14.
Environ Sci Pollut Res Int ; 31(21): 31605-31618, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38637484

RESUMO

For the serious situation of heavy metal pollution, the use of cheap, clean, and efficient biochar to immobilize heavy metals is a good treatment method. In this paper, SA@ZIF-8/BC was prepared for the adsorption of Pb2+ in solution using sodium alginate (SA) and zeolitic imidazolate framework-8 (ZIF-8) modified corn cob biochar. The results showed that the specific surface area of modified biochar was greatly improved, with good adsorption capacity for Pb2+, strong anti-interference ability, and good economy. At the optimal adsorption pH of 5, the adsorption model of Pb2+ by SA@ZIF-8/BC was more consistent with the pseudo-second-order kinetic model and Langmuir isotherm model. This indicates that the adsorption of Pb2+ by SA@ZIF-8/BC is chemisorption and monolayer adsorption. The maximum adsorption of modified biochar was 300 mg g-1, which was 2.38 times higher than that of before modified BC (126 mg g-1). The shift in binding energy of functional groups before and after adsorption of SA@ZIF-8/BC was studied by XPS, and it was found that hydroxyl and carboxyl groups played an important role in the adsorption of Pb2+. It was demonstrated that this novel adsorbent can be effectively used for the treatment of Pb pollution in wastewater.


Assuntos
Alginatos , Carvão Vegetal , Chumbo , Zeolitas , Adsorção , Carvão Vegetal/química , Alginatos/química , Chumbo/química , Zeolitas/química , Cinética , Poluentes Químicos da Água/química
15.
J Colloid Interface Sci ; 668: 50-58, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38669995

RESUMO

The ever-growing requirement for electrochemical energy storage has exacerbated the production of spent batteries, and the recycling of valuable battery components has recently received a remarkable attention. Among all battery components, copper foil is widely utilized as a current collector for stable zinc platting and stripping in zinc metal batteries (ZMBs) due to the perfect lattice matching of between metal copper and zinc, which is accompanied by the formation of multiple copper-zinc alloy components during the cycling process. Herein, a novel "two birds with one-stone" strategy through a one simple heat treatment step to revive the discarded copper foil in zinc metal battery is reported to further obtain a lithiophilic current collector (CuxZny-Cu) with multiple copper-zinc alloy components on the surface of the discarded copper foil. Such revived CuxZny-Cu current collector greatly reduces the lithium nucleation overpotential and realizes uniform lithium deposition and further inhibits lithium dendrites growth. The formed multiple CuxZny alloy phases on the surface of discarded copper foil exhibit a low Li nucleation overpotential of only 15 mV at 0.5 mA cm-2 for the first cycle. Moreover, such a CuxZny-Cu current collector could achieve stable cycle for 220 cycles at 0.5 mA cm-2 and 110 cycles at 1 mA cm-2 with a Li plating capacity of 1 mAh cm-2. Theoretical calculations indicate that, compared with pure Cu foil, the formed multiple alloy components of CuZn5, CuZn8, Cu0.61Zn0.39 and CuZn have low adsorption energy of -2.17, -2.55, -2.16 and -2.35 eV with lithium atoms, respectively, which result in reduced lithium nucleation overpotential. The full cell composed of CuxZny alloy current collector with deposition of 5 mAh cm-2 metal Li anode coupled with LiFePO4 (LFP) cathode exhibits a reversible capacity of 125.6 mAh/g after 110 cycles at a current of 0.5 C with capacity retention of 85.1 %. This work proposed a promising strategy to regenerate the discarded copper foil in rechargeable batteries.

16.
Front Immunol ; 15: 1358960, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655256

RESUMO

Introduction: Early detection of the virus in the environment or in infected pigs is a critical step to stop African swine fever virus (ASFV) transmission. The p22 protein encoded by ASFV KP177R gene has been shown to have no effect on viral replication and virulence and can serve as a molecular marker for distinguishing field virus strains from future candidate KP177R deletion vaccine strains. Methods: This study established an ASFV detection assay specific for the highly conserved ASFV KP177R gene based on recombinase polymerase amplification (RPA) and the CRISPR/Cas12 reaction system. The KP177R gene served as the initial template for the RPA reaction to generate amplicons, which were recognized by guide RNA to activate the trans-cleavage activity of Cas12a protein, thereby leading to non-specific cleavage of single-stranded DNA as well as corresponding color reaction. The viral detection in this assay could be determined by visualizing the results of fluorescence or lateral flow dipstick (LFD) biotin blotting for color development, and was respectively referred to as fluorescein-labeled RPA-CRISPR/Cas12a and biotin-labeled LFD RPA-CRISPR/Cas12a. The clinical samples were simultaneously subjected to the aforementioned assay, while real-time quantitative PCR (RT-qPCR) was employed as a control for determining the diagnostic concordance rate between both assays. Results: The results showed that fluorescein- and biotin-labeled LFD KP177R RPA-CRISPR/Cas12a assays specifically detected ASFV, did not cross-react with other swine pathogens including PCV2, PEDV, PDCoV, and PRV. The detection assay established in this study had a limit of detection (LOD) of 6.8 copies/µL, and both assays were completed in 30 min. The KP177R RPA-CRISPR/Cas12a assay demonstrated a diagnostic coincidence rate of 100% and a kappa value of 1.000 (p < 0.001), with six out of ten clinical samples testing positive for ASFV using both KP177R RPA-CRISPR/Cas12a and RT-qPCR, while four samples tested negative in both assays. Discussion: The rapid, sensitive and visual detection assay for ASFV developed in this study is suitable for field application in swine farms, particularly for future differentiation of field virus strains from candidate KP177R gene-deleted ASFV vaccines, which may be a valuable screening tool for ASF eradication.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Proteínas de Bactérias , Sistemas CRISPR-Cas , Vírus da Febre Suína Africana/genética , Animais , Suínos , Febre Suína Africana/virologia , Febre Suína Africana/diagnóstico , Proteínas Associadas a CRISPR/genética , Recombinases/genética , Recombinases/metabolismo , Proteínas Virais/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Endodesoxirribonucleases/genética , Sensibilidade e Especificidade
19.
Environ Toxicol ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488682

RESUMO

In the realm of glioma treatment, our groundbreaking research has uncovered the pivotal role of Integrin Beta 2 (ITGB2) in non-apoptotic cell death and its profound implications for immunotherapy efficacy. Gliomas, known for their aggressive and infiltrative nature, demand innovative therapeutic strategies for improved patient outcomes. Our study bridges a critical gap by examining the interplay between non-apoptotic cell death and immunotherapy response in gliomas. Through comprehensive analysis of ten diverse glioma datasets, we developed a unique death enrichment score and identified ITGB2 as a significant risk marker. This study demonstrates that ITGB2 can predict immune activity, mutation characteristics, and drug response in glioma patients. We reveal that ITGB2 not only mediates glioma proliferation and migration but also crucially influences immunotherapy responses by modulating the interaction between gliomas and macrophages by single-cell sequencing analysis (iTalk and ICELLNET). Employing a variety of molecular and cellular methodologies, including in vitro models, our findings highlight ITGB2 as a potent marker in glioma biology, particularly impacting macrophage migration and polarization. We present compelling evidence of ITGB2's dual role in regulating tumor cell behavior and shaping the immune landscape, thereby influencing therapeutic outcomes. The study underlines the potential of ITGB2-targeted strategies in enhancing the efficacy of immunotherapy and opens new avenues for personalized treatment approaches in glioma management. In conclusion, this research marks a significant stride in understanding glioma pathology and therapy, positioning ITGB2 as a key biomarker and a promising target in the quest for effective glioma treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA