Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Eur J Histochem ; 68(3)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39252535

RESUMO

The nucleotide binding oligomerization domain containing 2 (NOD2) protein and its ligand N-acetyl muramyl dipeptide (MDP) are crucially involved in Crohn's disease (CD). However, the mechanism by which NOD2 signaling is regulated in CD patients remains unclear. Ubiquitin specific protease (USP14) is a deubiquitylase that plays an important role in immunity. This study aimed to investigate the mechanism by which UPS14 regulates NOD2 induced inflammatory response in CD and inflammatory bowel diseases (IBD). Our results showed that USP14 protein and mRNA levels in intestinal tissues of CD patients were significantly higher than those in healthy controls. In addition, USP14 was upregulated in IBD mouse model. While treatment with MDP, TNF-α or the Toll-like receptor 1/2 agonist Pam3CSK4 all led to significantly higher mRNA levels of TNF-α, IL-8 and IL-1ß in THP-1 cells, pretreatment with USP14 inhibitor IU1 could stimulate further upregulation of TNF-α, IL-8 and IL-1ß. In particular, MDP promoted the activation of JNK, ERK1/2 and p38 as well as NF-kB in THP-1 cells, and IU1 significantly enhanced the MDP-induced activation of these proteins without effects on USP14 protein level. Furthermore, the JNK inhibitor sp600125, ERK1/2 inhibitor U0126 or P38 MAPK inhibitor PD169316 significantly decreased the mRNA levels of TNF-α, IL-8 and IL-1ß in THP-1 cells stimulated by both IU1 and MDP. In conclusion, our findings suggest that USP14 could inhibit MDP-induced activation of MAPK signaling and the inflammation response involved in IBD, and that USP14 is a potential therapeutic target for IBD.


Assuntos
Doença de Crohn , Proteína Adaptadora de Sinalização NOD2 , Ubiquitina Tiolesterase , Regulação para Cima , Doença de Crohn/metabolismo , Humanos , Proteína Adaptadora de Sinalização NOD2/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Ubiquitina Tiolesterase/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Masculino , Inflamação/metabolismo , Feminino , Adulto , Camundongos Endogâmicos C57BL , Células THP-1
2.
Curr Drug Deliv ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39171477

RESUMO

The medicinal value of Chinese medicines has been recognized since ancient times, and they have also been used to treat various diseases. However, in-depth studies on the active ingredients of Chinese medicines have shown that many of them suffer from poor water-solubility, stability, and bioavailability, which has severely limited their further development. The advent of nanomedicine represents a novel direction and paradigm for addressing these challenges. Particularly, within the framework of nanocrystal technology, enhancements in the water solubility, stability, and bioavailability of Chinese medicines are expected to significantly improve the therapeutic efficiency. This advancement also holds promise for unlocking new therapeutic capabilities. Nanocrystals offer significant advantages in oral, intravenous, intranasal and targeted delivery. The drug loading principle is "all in one", with hydrophobic-drug-in and hydrophilic-drug-out and stabilization by amphiphilic agents. Nanocrystal technology in traditional Chinese medicine (TCM) holds extensive application potential. Continuous refinement of preparation techniques, sound safety assessments, and the promotion of large-scale production are anticipated to augment its pivotal role in TCM formulations, thereby creating novel opportunities for clinical drug therapy.

3.
Angew Chem Int Ed Engl ; 63(42): e202410046, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39032152

RESUMO

Fast-charging capability and calendar life are critical metrics in rechargeable batteries, especially in silicon-based batteries that are susceptible to sluggish Li+ desolvation kinetics and HF-induced corrosion. No existing electrolyte simultaneously tackles both these pivotal challenges. Here we report a microscopically heterogeneous covalent organic nanosheet (CON) colloid electrolyte for extremely fast-charging and long-calendar-life Si-based lithium-ion batteries. Theoretical calculations and operando Raman spectroscopy reveal the fundamental mechanism of the multiscale noncovalent interaction, which involves the mesoscopic CON attenuating the microscopic Li+-solvent coordination, thereby expediting the Li+ desolvation kinetics. This electrolyte design enables extremely fast-charging capabilities of the full cell, both at 8 C (83.1 % state of charge) and 10 C (81.3 % state of charge). Remarkably, the colloid electrolyte demonstrates record-breaking cycling performance at 10 C (capacity retention of 92.39 % after 400 cycles). Moreover, benefiting from the robust adsorption capability of mesoporous CON towards HF and water, a notable improvement is observed in the calendar life of the full cell. This study highlights the role of microscopically heterogeneous colloid electrolytes in enhancing the fast-charging capability and calendar life of Si-based Li-ion batteries. Our work offers fresh perspectives on electrolyte design with multiscale interactions, providing insightful guidance for the development of alkali-ion/metal batteries operating under harsh environments.

4.
J Control Release ; 373: 599-616, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39074587

RESUMO

Ferroptosis-mediated multimodal therapy has emerged as a promising strategy for tumor elimination, with lipid peroxide (LPO) playing a pivotal role. However, the therapeutic efficiency is limited due to insufficient intracellular levels of free fatty acids (FFA), which severely hinder the production of LPO. To address this limitation, we proposed a lipophagy strategy aimed at degrading lipid droplets (LDs) to release FFA, serving as the essential "fuel" for LPO production. In this study, the lipophagy inducer epigallocatechin gallate (EGCG) was self-assembled with reactive oxygen species (ROS)-producer phenethyl isothiocyanate (PEITC) mediated by Fe2+ to form EFP nanocapsules, which were further integrated into microneedle patches to form a "all-in-one" EFP@MNs. The metal-polyphenol network structure of EFP endow it with photothermal therapy capacity. Upon insertion into tumors, the released EFP nanocapsules were demonstrated to induce lipophagy through metabolic disturbance, thereby promoting LPO production and facilitating ferroptosis. When combined with photothermal therapy, this approach significantly remolded the tumor immune microenvironment by driving tumor-associated macrophages toward M1 phenotype and enhancing dendritic cell maturation. Encouragingly, in conjunction with αPD-L1 treatment, the proposed EFP@MNs exhibited remarkable efficacy in tumor ablation. Our study presents a versatile framework for utilizing microneedle patches to power ferroptosis-mediated multimodal therapy.


Assuntos
Ferroptose , Nanocápsulas , Polifenóis , Ferroptose/efeitos dos fármacos , Animais , Polifenóis/administração & dosagem , Polifenóis/química , Nanocápsulas/química , Camundongos , Catequina/administração & dosagem , Catequina/análogos & derivados , Agulhas , Humanos , Linhagem Celular Tumoral , Terapia Fototérmica/métodos , Terapia Combinada , Feminino , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio/metabolismo , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Peróxidos Lipídicos/metabolismo , Isotiocianatos
5.
Neural Netw ; 179: 106523, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39053300

RESUMO

Community detection in multi-layer networks stands as a prominent subject within network analysis research. However, the majority of existing techniques for identifying communities encounter two primary constraints: they lack suitability for high-dimensional data within multi-layer networks and fail to fully leverage additional auxiliary information among communities to enhance detection accuracy. To address these limitations, a novel approach named weighted prior tensor training decomposition (WPTTD) is proposed for multi-layer network community detection. Specifically, the WPTTD method harnesses the tensor feature optimization techniques to effectively manage high-dimensional data in multi-layer networks. Additionally, it employs a weighted flattened network to construct prior information for each dimension of the multi-layer network, thereby continuously exploring inter-community connections. To preserve the cohesive structure of communities and to harness comprehensive information within the multi-layer network for more effective community detection, the common community manifold learning (CCML) is integrated into the WPTTD framework for enhancing the performance. Experimental evaluations conducted on both artificial and real-world networks have verified that this algorithm outperforms several mainstream multi-layer network community detection algorithms.


Assuntos
Algoritmos , Redes Neurais de Computação , Aprendizado de Máquina , Humanos
6.
J Phys Chem Lett ; 15(31): 7924-7930, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39072443

RESUMO

With the increasing demand for ultrafast communication and information processing in future optical chips, arbitrary manipulation of electromagnetic fields in the femtosecond-nanometer spatiotemporal scale has attracted great attention in integrated optics. Manipulation of the nanoscale light field in the real femtosecond temporal domain is challenging work. Here, we have demonstrated all-optical control of ultrafast switching between the hybridized plasmonic fields of a Au nanorod dimer in the fs-nm scale using a dispersed femtosecond laser and revealed the transformation process with ultrahigh spatiotemporal resolved technology via the combination of a pump-probe technique and photoemission electron microscopy (PEEM). The results show that we can actively and coherently control the transformation sequence and time (with the shortest temporal interval of around 15 fs) of the two hybridized modes in the Au nanorod dimer by tuning the dispersion of the laser pulse. The nanoscale light manipulation achieved by all-optical control may contribute to the design of high-speed miniaturized signal-processing systems.

7.
Materials (Basel) ; 17(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38793285

RESUMO

Single-pass-welding thermal cycles with different peak temperatures (Tp) were reproduced by a Gleeble 3800 to simulate the heat-affected zone (HAZ) of a Fe-24Mn-4Cr-0.4C-0.3Cu (wt.%) high manganese austenitic steel. Then, the effect of Tp on the microstructure and mechanical properties of the HAZ were investigated. The results indicate that recrystallization and grain growth play dominant roles. Based on this, the HAZ is proposed to categorize into three zones: the recrystallization heat-affected zone (RHAZ) with a Tp of 700~900 °C, the transition heat-affected zone (THAZ) with a Tp of 900~1000 °C, and the coarse grain heat-affected zone (CGHAZ) with a Tp of 1000~1300 °C. The recrystallization fraction was 29~44% in the RHAZ, rapidly increased to 87% in the THAZ, and exceeded 95% in the CGHAZ. The average grain size was 17~19 µm in the RHAZ, slightly increased to 22 µm in the THAZ, and ultimately increased to 37 µm in the CGHAZ. The yield strength in the RHAZ and THAZ was consistent with the change in recrystallization fraction, while in the CGHAZ, it satisfied the Hall-Petch relationship with grain size. In addition, compared with the base material, the Charpy impact absorbed energy at -196 °C decreased by 22% in the RHAZ, but slightly increased in the CGHAZ. This indicates that the theory of fine grain strengthening and toughening is not entirely applicable to the HAZ of the investigated high-Mn steel.

8.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1144-1153, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621961

RESUMO

Agaricus blazei is a rare medicinal and edible fungus with a crispy taste and delicious flavor. Both fruiting body and mycelium are rich in polysaccharides, sterols, terpenoids, peptides, lipids, polyphenols, and other active ingredients, which have strong pharmacological activities such as anti-tumor, lipid-lowering, glucose-lowering, immunomodulation, optimization of intestinal flora, and anti-oxidation. Therefore, it is a kind of fungal resource with a great prospect of edible and medicinal development. Among the reported chemical components of A. blazei, blazeispirol is a series of sterol compounds unique to A. blazei, which has a spiral structure and is different from classical steroids. It is an important active ingredient found in the mycelium of A. blazei and has significant hepatoprotective activity. It can be used as a phylogenetic and chemotaxonomic marker of A. blazei strains and is considered an excellent lead compound for drug development. According to the skeleton structure characteristics, the 17 discovered blazeispirol compounds can be divided into two types: blazeispirane and problazeispirane. In order to further explore the resource of blazeispirol compounds of A. blazei, the discovery, isolation, structure, biological activity, and biosynthetic pathways of blazeispirol compounds of A. blazei were systematically reviewed. Besides, the metabolic regulation strategies related to the fermentation synthesis of blazeispirol A by A. blazei were discussed. This review could provide a reference for the efficient synthesis and development of blazeispirol compounds, the research and development of related drugs and functional foods, and the quality improvement of A. blazei and other medicinal and edible fungi resources and derivatives.


Assuntos
Agaricus , Neoplasias , Filogenia , Polissacarídeos , Esteroides , Agaricus/química , Agaricus/metabolismo
9.
Pharmaceutics ; 16(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38399222

RESUMO

With the development of nanotechnology and confronting the problems of traditional pharmaceutical formulations in treating lung diseases, inhalable nano-formulations have attracted interest. Inhalable nano-formulations for treating lung diseases allow for precise pulmonary drug delivery, overcoming physiological barriers, improving aerosol lung deposition rates, and increasing drug bioavailability. They are expected to solve the difficulties faced in treating lung diseases. However, limited success has been recorded in the industrialization translation of inhalable nano-formulations. Only one relevant product has been approved by the FDA to date, suggesting that there are still many issues to be resolved in the clinical application of inhalable nano-formulations. These systems are characterized by a dependence on inhalation devices, while the adaptability of device formulation is still inconclusive, which is the most important issue impeding translational research. In this review, we categorized various inhalable nano-formulations, summarized the advantages of inhalable nano-formulations over conventional inhalation formulations, and listed the inhalable nano-formulations undergoing clinical studies. We focused on the influence of inhalation devices on nano-formulations and analyzed their adaptability. After extensive analysis of the drug delivery mechanisms, technical processes, and limitations of different inhalation devices, we concluded that vibrating mesh nebulizers might be most suitable for delivering inhalable nano-formulations, and related examples were introduced to validate our view. Finally, we presented the challenges and outlook for future development. We anticipate providing an informative reference for the field.

10.
Immunopharmacol Immunotoxicol ; 46(2): 192-198, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38147028

RESUMO

OBJECTIVE: Endoplasmic reticulum stress (ERS) and Toll-like receptor 2 (TLR2) signaling play an important role in inflammatory bowel disease (IBD); however, the link between TLR2 and ERS in IBD is unclear. This study investigated whether Thapsigargin (TG) -induced ER protein expression levels contributed to TLR2-mediated inflammatory response. METHODS: The THP-1 cells were treated with TLR2 agonist (Pam3CSK4), ERS inducer Thapsigargin (TG) or inhibitor (TUDCA). The mRNA expressions of TLR1-TLR10 were detected by qPCR. The production and secretion of inflammatory factors were detected by PCR and ELISA. Immunohistochemistry was used to detect the expressions of GRP78 and TLR2 in the intestinal mucosa of patients with Crohn's disease (CD). The IBD mouse model was established by TNBS in the modeling group. ERS inhibitor (TUDCA) was used in the treatment group. RESULTS: The expression of TLRs was detected via polymerase chain reaction (PCR) in THP-1 cells treated by ERS agonist Thapsigargin (TG). According to the findings, TG could promote TLR2 and TLR5 expression. Subsequently, in TLR2 agonist Pam3CSK4 induced THP-1 cells, TG could lead to increased expression of the inflammatory factors such as TNF-α, IL-1ß and IL-8, and ERS inhibitor (TUDCA) could block this effect. However, Pam3CSK4 did not significantly impact the GRP78 and CHOP expression. Based upon the immunohistochemical results, TLR2 and GRP78 expression were significantly increased in the intestinal mucosa of patients with Crohn's disease (CD). For in vivo experiments, TUDCA displayed the ability to inhibit intestinal mucosal inflammation and reduce GRP78 and TLR2 proteins. CONCLUSIONS: ERS and TLR2 is upregulated in inflammatory bowel disease, ERS may promote TLR2 pathway-mediated inflammatory response. Moreover, ERS and TLR2 signaling could be novel therapeutic targets for IBD.


Assuntos
Doença de Crohn , Doenças Inflamatórias Intestinais , Ácido Tauroquenodesoxicólico , Camundongos , Animais , Humanos , Receptor 2 Toll-Like/metabolismo , Chaperona BiP do Retículo Endoplasmático , Tapsigargina/farmacologia , Estresse do Retículo Endoplasmático
11.
Materials (Basel) ; 16(19)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37834667

RESUMO

CoCrNi alloys exhibit excellent strength and ductility. In this work, the CoCrNiV multi-principal alloy with single-phase fine grained (FG) structure was prepared by rolling and heat treatment. The characteristics of deformation microstructures and mechanical properties were systematically investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM). The results indicate that the CoCrNiV alloy successfully attains a yield strength of 1060 MPa while maintaining a uniform elongation of 24.1%. The enhanced strength originates from FG structure and severe lattice distortion induced by V addition. Meanwhile, the exceptional ductility arises from the stable strain-hardening ability facilitated by dislocations and stacking faults. The deformation mechanisms and the optimization strategies for attaining both strength and ductility are thoroughly discussed.

12.
Artigo em Inglês | MEDLINE | ID: mdl-37581963

RESUMO

Accurately predicting anesthetic effects is essential for target-controlled infusion systems. The traditional (PK-PD) models for Bispectral index (BIS) prediction require manual selection of model parameters, which can be challenging in clinical settings. Recently proposed deep learning methods can only capture general trends and may not predict abrupt changes in BIS. To address these issues, we propose a transformer-based method for predicting the depth of anesthesia (DOA) using drug infusions of propofol and remifentanil. Our method employs long short-term memory (LSTM) and gate residual network (GRN) networks to improve the efficiency of feature fusion and applies an attention mechanism to discover the interactions between the drugs. We also use label distribution smoothing and reweighting losses to address data imbalance. Experimental results show that our proposed method outperforms traditional PK-PD models and previous deep learning methods, effectively predicting anesthetic depth under sudden and deep anesthesia conditions.


Assuntos
Anestesia , Propofol , Humanos , Remifentanil , Anestésicos Intravenosos , Piperidinas , Eletroencefalografia
13.
Materials (Basel) ; 16(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37512441

RESUMO

Equiatomic CoCrNi medium-entropy alloys exhibit superior strength and ductility. In this work, a non-equiatomic CoCrNi alloy with low stacking fault energy was designed, and different fractions of V were added to control the stacking fault energy and lattice distortion. Mechanical properties were evaluated by tensile tests, and deformation microstructures were characterized by transmission electron microscope (TEM). The main deformation mechanisms of CoCrNiV alloy with low V content are dislocation slip, stacking faults, and deformation-induced HCP phase transformation, while the dominant deformation patterns of CoCrNiV alloy with high V contents are dislocation slip and stacking faults. The yield strength increases dramatically when the V content is high, and the strain-hardening behavior changes non-monotonically with increasing the V content. V addition increases the stacking fault energy (SFE) and lattice distortion. The lower strain-hardening rate of 6V alloy than that of 2V alloy is dominated by the SFE. The higher strain-hardening rate of 10V alloy than that of 6V alloy is dominated by the lattice distortion. The effects of V addition on the SFE, lattice distortion, and strain-hardening behavior are discussed.

14.
Immunol Res ; 71(6): 800-813, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37291329

RESUMO

Ubiquitination (or ubiquitylation) and de-ubiquitination, which are both post-translational modifications (PTMs) of proteins, have become a research hotspot in recent years. Some ubiquitinated or de-ubiquitinated signaling proteins have been found to promote or suppress innate immunity through Toll-like receptor (TLR), RIG-like receptor (RIG-I-like receptor, RLR), NOD-like receptor (NLR), and the cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS)-STING pathway. This article aimed to provide a review on the role of ubiquitination and de-ubiquitination, especially ubiquitin ligase enzymes and de-ubiquitinating enzymes, in the above four pathways. We hope that our work can contribute to the research and development of treatment strategies for innate immunity-related diseases such as inflammatory bowel disease.


Assuntos
Proteínas NLR , Ubiquitina , Ligases , Imunidade Inata , Receptores Toll-Like
15.
Foods ; 12(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36981178

RESUMO

In recent years, cardiovascular and cerebrovascular diseases have been the focus of several studies. In this study, oyster protein hydrolysate was produced via enzyme hydrolysis and used as a fermentation substrate to ferment recombinant strain PSP2 to produce nattokinase. Using the synergism strategy, fermentation products with fibrinolytic and angiotensin I-converting enzyme (ACE) inhibitory activities were obtained and evaluated. The fermentation medium contained 1.0% trypsin, 1.0% oyster protein hydrolysate, 2.0% maltose, and 0.5% sodium chloride, with an initial pH of 7.0. The maximum nattokinase activity was 390.23 ± 10.24 FU/mL after 72 h of fermentation. The flavor of the product was improved, and heavy metals and volatile salt nitrogen were partially removed via fermentation. The ACE inhibitory activity (IC50) of the fermentation products was 1.433 mg/mL. This study provides a novel approach for the development of marine functional foods with hypotensive and antithrombotic properties.

16.
J Control Release ; 353: 591-610, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36503071

RESUMO

Intracellular Methicillin-Resistant Staphylococcus aureus (MRSA) remains a major factor of refractory and recurrent infections, which cannot be well addressed by antibiotic therapy. Here, we design a cellular infectious microenvironment-activatable polymeric nano-system to mediate targeted intracellular drug delivery for macrophage reprogramming and intracellular MRSA eradication. The polymeric nano-system is composed of a ferrocene-decorated polymeric nanovesicle formulated from poly(ferrocenemethyl methacrylate)-block-poly(2-methacryloyloxyethyl phosphorylcholine) (PFMMA-b-PMPC) copolymer with co-encapsulation of clofazimine (CFZ) and interferon-γ (IFN-γ). The cellular-targeting PMPC motifs render specific internalization by macrophages and allow efficient intracellular accumulation. Following the internalization, the ferrocene-derived polymer backbone sequentially undergoes hydrophobic-to-hydrophilic transition, charge reversal and Fe release in response to intracellular hydrogen peroxide over-produced upon infection, eventually triggering endosomal escape and on-site cytosolic drug delivery. The released IFN-γ reverses the immunosuppressive status of infected macrophages by reprogramming anti-inflammatory M2 to pro-inflammatory M1 phenotype. Meanwhile, intracellular Fe2+-mediated Fenton reaction together with antibiotic CFZ contributes to increased intracellular hydroxyl radical (•OH) generation. Ultimately, the nano-system achieves robust potency in ablating intracellular MRSA and antibiotic-tolerant persisters by synchronous immune modulation and efficient •OH killing, providing an innovative train of thought for intracellular MRSA control.


Assuntos
Antibacterianos , Macrófagos , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Interferon gama , Macrófagos/imunologia , Metalocenos/uso terapêutico , Staphylococcus aureus Resistente à Meticilina/imunologia , Polímeros/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/imunologia , Nanoestruturas/uso terapêutico
17.
J Med Virol ; 95(1): e28380, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36478357

RESUMO

Children are the high-risk group for COVID-19, and in need of vaccination. However, humoral and cellular immune responses of COVID-19 vaccine remain unclear in vaccinated children. To establish the rational immunization strategy of inactivated COVID-19 vaccine for children, the immunogenicity of either one dose or two doses of the vaccine in children was evaluated. A prospective cohort study of 322 children receiving inactivated COVID-19 vaccine was established in China. The baseline was conducted after 28 days of the first dose, and the follow-up was conducted after 28 days of the second dose. The median titers of receptor binding domain (RBD)-IgG, and neutralizing antibody (NAb) against prototype strain and Omicron variant after the second dose increased significantly compared to those after the first dose (first dose: 70.0, [interquartile range, 30.0-151.0] vs. second dose: 1261.0 [636.0-2060.0] for RBD-IgG; 2.5 [2.5-18.6] vs. 252.0 [138.6-462.1] for NAb against prototype strain; 2.5 [2.5-2.5] vs. 15.0 [7.8-26.5] for NAb against Omicron variant, all p < 0.05). The flow cytometry results showed that the first dose elicited SARS-CoV-2 specific cellular immunity, while the second dose strengthened SARS-CoV-2 specific IL-2+ or TNF-α+  monofunctional, IFN-γ+ TNF-α+  bifunctional, and IFN-γ- IL-2+ TNF-α+ multifunctional CD4+ T cell responses (p < 0.05). Moreover, SARS-CoV-2 specific memory T cells were generated after the first vaccination, including the central memory T cells and effector memory T cells. The present findings provide scientific evidence for the vaccination strategy of the inactive vaccines among children against COVID-19 pandemic.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Criança , Humanos , População do Leste Asiático , Interleucina-2 , Pandemias , Estudos Prospectivos , Fator de Necrose Tumoral alfa , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação , Imunidade Celular , Anticorpos Neutralizantes , Imunoglobulina G , Anticorpos Antivirais , Imunidade Humoral
18.
Org Lett ; 24(45): 8283-8288, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36331137

RESUMO

In this work, we successfully explored an unexpected dehydrogenation triggered by Pd/Cu-catalyzed C(sp3)-H arylation and intramolecular C-N coupling of amides to synthesize the bioactive 1,2-dihydroquinoline scaffold with good regioselectivity and good compatibility of functional groups. This strategy provides an alternative route to realize molecular complexity and diversity from simple and readily available molecules via multiple C-H bond activation. Preliminary mechanistic studies demonstrated that ß,γ-dehydrogenation is triggered by the arylation of the C(sp3)-H bond and the intramolecular C-N coupling.


Assuntos
Amidas , Paládio , Amidas/química , Paládio/química , Catálise , Estrutura Molecular
19.
Nature ; 608(7921): 62-68, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35922499

RESUMO

Additive manufacturing produces net-shaped components layer by layer for engineering applications1-7. The additive manufacture of metal alloys by laser powder bed fusion (L-PBF) involves large temperature gradients and rapid cooling2,6, which enables microstructural refinement at the nanoscale to achieve high strength. However, high-strength nanostructured alloys produced by laser additive manufacturing often have limited ductility3. Here we use L-PBF to print dual-phase nanolamellar high-entropy alloys (HEAs) of AlCoCrFeNi2.1 that exhibit a combination of a high yield strength of about 1.3 gigapascals and a large uniform elongation of about 14 per cent, which surpasses those of other state-of-the-art additively manufactured metal alloys. The high yield strength stems from the strong strengthening effects of the dual-phase structures that consist of alternating face-centred cubic and body-centred cubic nanolamellae; the body-centred cubic nanolamellae exhibit higher strengths and higher hardening rates than the face-centred cubic nanolamellae. The large tensile ductility arises owing to the high work-hardening capability of the as-printed hierarchical microstructures in the form of dual-phase nanolamellae embedded in microscale eutectic colonies, which have nearly random orientations to promote isotropic mechanical properties. The mechanistic insights into the deformation behaviour of additively manufactured HEAs have broad implications for the development of hierarchical, dual- and multi-phase, nanostructured alloys with exceptional mechanical properties.

20.
Molecules ; 27(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35889391

RESUMO

Diarrhea-based Irritable Bowel Syndrome (D-IBS) and diarrhea are both associated with ecological imbalance of the gut microbiota. Low Molecular Weight Peptides (LMWP) from the larvae of Musca domestica have been shown to be effective in the treatment of diarrhea and regulation of gut microbiota. Meanwhile, the single polypeptide S3-3 was successfully isolated and identified from LMWP in our previous studies. It remains unclear exactly whether and how LMWP (S3-3) alleviate D-IBS through regulating gut microbiota. We evaluated the gut microbiota and pharmacology to determine the regulation of gut microbiota structure and the alleviating effect on D-IBS through LMWP (S3-3). The rates of loose stools, abdominal withdrawal reflex (AWR) and intestinal tract motility results revealed that LMWP (S3-3) from the larvae of Musca domestica had a regulating effect against diarrhea, visceral hypersensitivity and gastrointestinal (GI) dysfunction in D-IBS model mice. Additionally, 16S rRNA gene sequencing was utilized to examine the gut microbiota, which suggests that LMWP induce structural changes in the gut microbiota and alter the levels of the following gut microbiota: Bacteroidetes, Proteobacteria and Verrucomicrobia. LMWP putatively functioned through regulating 5-HT, SERT, 5-HT2AR, 5-HT3AR and 5-HT4R according to the results of ELISA, qRT-PCR and IHC. The findings of this study will contribute to further understanding how LMWP (S3-3) attenuate the effects of D-IBS on diarrhea, visceral hypersensitivity and GI dysfunction.


Assuntos
Microbioma Gastrointestinal , Moscas Domésticas , Síndrome do Intestino Irritável , Animais , Diarreia/tratamento farmacológico , Microbioma Gastrointestinal/fisiologia , Síndrome do Intestino Irritável/tratamento farmacológico , Larva , Camundongos , Peso Molecular , Peptídeos , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA