Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Structure ; 31(12): 1567-1577.e5, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-37794594

RESUMO

The structure determination of protein tyrosine phosphatase (PTP): phospho-protein complexes, which is essential to understand how specificity is achieved at the amino acid level, remains a significant challenge for protein crystallography and cryoEM due to the transient nature of binding interactions. Using rPTPεD1 and phospho-SrcKD as a model system, we have established an integrative workflow to address this problem, by means of which we generate a protein:phospho-protein complex model using predetermined protein structures, SAXS and pTyr-tailored MD simulations. Our model reveals transient protein-protein interactions between rPTPεD1 and phospho-SrcKD and is supported by three independent experimental validations. Measurements of the association rate between rPTPεD1 and phospho-SrcKD showed that mutations on the rPTPεD1: SrcKD complex interface disrupts these transient interactions, resulting in a reduction in protein-protein association rate and, eventually, phosphatase activity. This integrative approach is applicable to other PTP: phospho-protein complexes and the characterization of transient protein-protein interface interactions.


Assuntos
Proteínas , Espalhamento a Baixo Ângulo , Difração de Raios X , Fosforilação
2.
Cell Death Dis ; 14(8): 540, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607937

RESUMO

Accumulating evidence has shown that the quality of proteins must be tightly monitored and controlled to maintain cellular proteostasis. Misfolded proteins and protein aggregates are targeted for degradation through the ubiquitin proteasome (UPS) and autophagy-lysosome systems. The ubiquitination and deubiquitinating enzymes (DUBs) have been reported to play pivotal roles in the regulation of the UPS system. However, the function of DUBs in the regulation of autophagy remain to be elucidated. In this study, we found that knockdown of Leon/USP5 caused a marked increase in the formation of autophagosomes and autophagic flux under well-fed conditions. Genetic analysis revealed that overexpression of Leon suppressed Atg1-induced cell death in Drosophila. Immunoblotting assays further showed a strong interaction between Leon/USP5 and the autophagy initiating kinase Atg1/ULK1. Depletion of Leon/USP5 led to increased levels of Atg1/ULK1. Our findings indicate that Leon/USP5 is an autophagic DUB that interacts with Atg1/ULK1, negatively regulating the autophagic process.


Assuntos
Autofagia , Proteínas de Drosophila , Animais , Autofagia/genética , Autofagossomos , Morte Celular , Drosophila , Lisossomos , Complexo de Endopeptidases do Proteassoma , Ubiquitina , Enzimas Desubiquitinantes , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteínas de Drosophila/genética , Proteases Específicas de Ubiquitina/genética
3.
Autophagy ; 17(10): 2750-2765, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33112705

RESUMO

Macroautophagy/autophagy is an evolutionarily conserved intracellular pathway for the degradation of cytoplasmic materials. Under stress conditions, autophagy is upregulated and double-membrane autophagosomes are formed by the expansion of phagophores. The ATG16L1 precursor fusion contributes to development of phagophore structures and is critical for the biogenesis of autophagosomes. Here, we discovered a novel role of the protein tyrosine phosphatase PTPN9 in the regulation of homotypic ATG16L1 vesicle fusion and early autophagosome formation. Depletion of PTPN9 and its Drosophila homolog Ptpmeg2 impaired autophagosome formation and autophagic flux. PTPN9 colocalized with ATG16L1 and was essential for homotypic fusion of ATG16L1+ vesicles during starvation-induced autophagy. We further identified the Q-SNARE VTI1B as a substrate target of PTPN9 phosphatase. Like PTPN9, the VTI1B nonphosphorylatable mutant but not the phosphomimetic mutant enhanced SNARE complex assembly and autophagic flux. Our findings highlight the important role of PTPN9 in the regulation of ATG16L1+ autophagosome precursor fusion and autophagosome biogenesis through modulation of VTI1B phosphorylation status.Abbreviations: csw: corkscrew; EBSS: Earle's balanced salt solution; ERGIC: ER-Golgi intermediate compartment; ESCRT: endosomal sorting complexes required for transport; mop: myopic; NSF: N-ethylmaleimide-sensitive factor; PAS: phagophore assembly site; PolyQ: polyglutamine; PtdIns3P: phosphatidylinositol-3-phosphate; PTK: protein tyrosine kinase; PTM: posttranslational modification; PTP: protein tyrosine phosphatase; PTPN23/HD-PTP: protein tyrosine phosphatase non-receptor type 23; SNARE: soluble N-ethylmaleimide sensitive factor attachment protein receptor; STX7: syntaxin 7; STX8: syntaxin 8; STX17: syntaxin 17; VAMP3: vesicle associated membrane protein 3; VAMP7: vesicle associated membrane protein 7; VTI1B: vesicle transport through interaction with t-SNAREs 1B; YKT6: YKT6 v-SNARE homolog; ZFYVE1/DFCP1: zinc finger FYVE-type containing 1.


Assuntos
Autofagossomos , Proteínas Relacionadas à Autofagia , Macroautofagia , Proteínas Tirosina Fosfatases não Receptoras , Proteínas Qb-SNARE , Autofagossomos/metabolismo , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Células HeLa , Humanos , Fusão de Membrana , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Proteínas Qb-SNARE/metabolismo
4.
Oncogene ; 38(44): 7002-7016, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31406243

RESUMO

Cancer cell migration plays a crucial role during the metastatic process. Reversible tyrosine phosphorylation by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) have been implicated in the regulation of cancer cell migration and invasion. However, the underlying mechanisms have not been fully elucidated. Here, we show that depletion of the FERM and PDZ domain-containing protein tyrosine phosphatase PTPN3 enhances lung cancer cell migration/invasion and metastasis by promoting actin filament assembly and focal adhesion dynamics. We further identified Src and DAAM1 (dishevelled associated activator of morphogenesis 1) as interactors of PTPN3. DAAM1 is a formin-like protein involved in the regulation of actin cytoskeletal remodeling. PTPN3 inhibits Src activity and Src-mediated phosphorylation of Tyr652 on DAAM1. The tyrosine phosphorylation of DAAM1 is essential for DAAM1 homodimer formation and actin polymerization. Ectopic expression of a DAAM1 phosphodeficient mutant inhibited F-actin assembly and suppressed lung cancer cell migration and invasion. Our findings reveal a novel mechanism by which reversible tyrosine phosphorylation of DAAM1 by Src and PTPN3 regulates actin dynamics and lung cancer invasiveness.


Assuntos
Actinas/metabolismo , Neoplasias Pulmonares/patologia , Proteínas dos Microfilamentos/metabolismo , Invasividade Neoplásica , Proteína Tirosina Fosfatase não Receptora Tipo 3/fisiologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Adesões Focais , Humanos , Polimerização
5.
Autophagy ; 11(9): 1580-93, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26208681

RESUMO

In Saccharomyces cerevisiae, a constitutive biosynthetic transport pathway, termed the cytoplasm-to-vacuole targeting (Cvt) pathway, sequesters precursor aminopeptidase I (prApe1) dodecamers in the form of a large complex into a Cvt vesicle using autophagic machinery, targeting it into the vacuole (the yeast lysosome) where it is proteolytically processed into its mature form, Ape1, by removal of an amino-terminal 45-amino acid propeptide. prApe1 is thought to serve as a scaffolding cargo critical for the assembly of the Cvt vesicle by presenting the propeptide to mediate higher-ordered complex formation and autophagic receptor recognition. Here we report the X-ray crystal structure of Ape1 at 2.5 Å resolution and reveal its dodecameric architecture consisting of dimeric and trimeric units, which associate to form a large tetrahedron. The propeptide of prApe1 exhibits concentration-dependent oligomerization and forms a stable tetramer. Structure-based mutagenesis demonstrates that disruption of the inter-subunit interface prevents dodecameric assembly and vacuolar targeting in vivo despite the presence of the propeptide. Furthermore, by examining the vacuolar import of propeptide-fused exogenous protein assemblies with different quaternary structures, we found that 3-dimensional spatial distribution of propeptides presented by a scaffolding cargo is essential for the assembly of the Cvt vesicle for vacuolar delivery. This study describes a molecular framework for understanding the mechanism of Cvt or autophagosomal biogenesis in selective macroautophagy.


Assuntos
Aminopeptidases/metabolismo , Autofagia , Vesículas Citoplasmáticas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Aminopeptidases/química , Cristalografia por Raios X , Vesículas Citoplasmáticas/ultraestrutura , Modelos Moleculares , Mutação , Peptídeos/química , Multimerização Proteica , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Frações Subcelulares/metabolismo , Vacúolos/metabolismo
6.
Mol Cell Biol ; 34(9): 1594-606, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24550005

RESUMO

The rapid removal of larval midgut is a critical developmental process directed by molting hormone ecdysone during Drosophila metamorphosis. To date, it remains unclear how the stepwise events can link the onset of ecdysone signaling to the destruction of larval midgut. This study investigated whether ecdysone-induced expression of receptor protein tyrosine phosphatase PTP52F regulates this process. The mutation of the Ptp52F gene caused significant delay in larval midgut degradation. Transitional endoplasmic reticulum ATPase (TER94), a regulator of ubiquitin proteasome system, was identified as a substrate and downstream effector of PTP52F in the ecdysone signaling. The inducible expression of PTP52F at the puparium formation stage resulted in dephosphorylation of TER94 on its Y800 residue, ensuring the rapid degradation of ubiquitylated proteins. One of the proteins targeted by dephosphorylated TER94 was found to be Drosophila inhibitor of apoptosis 1 (DIAP1), which was rapidly proteolyzed in cells with significant expression of PTP52F. Importantly, the reduced level of DIAP1 in response to inducible PTP52F was essential not only for the onset of apoptosis but also for the initiation of autophagy. This study demonstrates a novel function of PTP52F in regulating ecdysone-directed metamorphosis via enhancement of autophagic and apoptotic cell death in doomed Drosophila midguts.


Assuntos
Apoptose , Autofagia , Proteínas de Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento , Ecdisona/metabolismo , Metamorfose Biológica , Proteínas Tirosina Fosfatases/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Drosophila/citologia , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Inibidoras de Apoptose/metabolismo , Larva/citologia , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Proteínas Tirosina Fosfatases/genética , Transdução de Sinais , Ubiquitinação , Proteína com Valosina
7.
Dev Cell ; 27(5): 489-503, 2013 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-24268699

RESUMO

Autophagy is a highly conserved catabolic process that degrades and recycles intracellular components through the lysosomes. Atg9 is the only integral membrane protein among autophagy-related (Atg) proteins thought to carry the membrane source for forming autophagosomes. Here we show that Drosophila Atg9 interacts with Drosophila tumor necrosis factor receptor-associated factor 2 (dTRAF2) to regulate the c-Jun N-terminal kinase (JNK) signaling pathway. Significantly, depletion of Atg9 and dTRAF2 compromised JNK-mediated intestinal stem cell proliferation and autophagy induction upon bacterial infection and oxidative stress stimulation. In mammalian cells, mAtg9 interacts with TRAF6, the homolog of dTRAF2, and plays an essential role in regulating oxidative stress-induced JNK activation. Moreover, we found that ROS-induced autophagy acts as a negative feedback regulator of JNK activity by dissociating Atg9/mAtg9 from dTRAF2/TRAF6 in Drosophila and mammalian cells, respectively. Our findings indicate a dual role for Atg9 in the regulation of JNK signaling and autophagy under oxidative stress conditions.


Assuntos
Autofagia/fisiologia , Proteínas de Drosophila/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas de Membrana/metabolismo , Estresse Oxidativo/fisiologia , Fator 2 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Animais , Proteínas Relacionadas à Autofagia , Proliferação de Células , Drosophila melanogaster , Retroalimentação Fisiológica/fisiologia , Células HEK293 , Humanos , Células MCF-7 , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA