Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Microbiol Spectr ; : e0034124, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39248524

RESUMO

The plasmid-mediated gene mcr-1 that makes bacteria resistant to the antibiotic colistin is spreading quickly, which means that colistin is no longer working well to treat Gram-negative bacterial infections. Herein, we utilized a computer-aided high-throughput screening drugs method to identify the natural product apigenin, a potential mcr-protein inhibitor, which effectively enhanced the antimicrobial activity of colistin. Several assays, including a checkerboard minimum inhibitory concentration assay, a time-kill assay, the combined disk test, molecular simulation dynamics, and animal infection models assay, were conducted to verify whether apigenin enhanced the ability of colistin to fight Gram-negative bacterial infections. The results showed that apigenin improved the antimicrobial activity of colistin against multidrug-resistant Enterobacteriaceae infection. Moreover, apigenin not only did not increase the toxic effect of colistin but also had the ability to effectively inhibit the frequency of bacterial resistance mutations to colistin. Studies clearly elucidated that apigenin could interfere with the thermal stability of the protein by binding to the mcr-1 protein. Additionally, the combination of apigenin and colistin could exert multiple effects, including disrupting bacterial membranes, the generation of bacterial nitric oxide and reactive oxygen species, as well as inhibiting bacterial adenosine triphosphate production. Furthermore, the addition of apigenin was able to significantly inhibit colistin-stimulated high expression levels of the bacterial mcr-1 gene. Finally, apigenin exhibited a characteristic anti-inflammatory effect while enhancing the antimicrobial activity of colistin against mcr-1-positive Escherichia coli (E. coli) infected animals. In conclusion, as a potential lead compound, apigenin is promising in combination with colistin in the future treatment of mcr-1-positive E. coli infections.IMPORTANCEThis study found that apigenin was able to inhibit the activity of the mcr-1 protein using a high-throughput virtual screening method. Apigenin effectively enhanced the antimicrobial activity of colistin against multidrug-resistant Enterobacteriaceae, including mcr-1-positive strains, in vitro and in vivo. This study will provide new options and strategies for the future treatment of multidrug-resistant pathogen infections.

2.
Insights Imaging ; 15(1): 215, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39186145

RESUMO

OBJECTIVES: Newly detected hepatic nodules during follow-up of cancer survivors receiving chemotherapy may pose a diagnostic dilemma. We investigated a series of hepatic focal nodular hyperplasia (FNH) diagnosed by either typical MRI features and follow-up or pathology in cancer survivors. METHODS: This retrospective study evaluated 38 patients with tumours who developed new hepatic FNH after cyclophosphamide-based (n = 19) and oxaliplatin-based (n = 19) chemotherapies. The main tumour types were breast cancer (n = 18) and colorectal cancer (n = 17). MRI findings, clinical features, and temporal evolution of all target hepatic lesions (n = 63) were reported. In addition, the two chemotherapy drug groups were compared. RESULTS: The median interval between chemotherapy completion and FNH detection was 30.4 months (12.9, 49.4). Six patients underwent biopsy or surgery, while the remaining patients were diagnosed based on typical MRI features and long-term follow-up. Among the patients, 60.5% (23/38) presented with multiple nodules and 63 target lesions were detected. The median size of target lesions was 11.5 mm (8.4, 15.1). The median follow-up time was 32.5 months (21.2, 48.6), and 15 patients experienced changes in their lesions during the follow-up period (11 increased and 4 decreased). The cyclophosphamide-based treatment group had a younger population, a greater proportion of females, and a shorter time to discovery than the oxaliplatin-based chemotherapy group (all p ≤ 0.016). CONCLUSIONS: FNH may occur in cancer survivors after cyclophosphamide- or oxaliplatin-based chemotherapy. Considering a patient's treatment history and typical MRI findings can help avoid misdiagnosis and unnecessary invasive treatment. CLINICAL RELEVANCE STATEMENT: When cancer survivors develop new hepatic nodules during follow-up, clinicians should think of the possibility of focal nodular hyperplasia in addition to liver metastasis, especially if the cancer survivors were previously treated with cyclophosphamide or oxaliplatin. KEY POINTS: Cancer survivors, after chemotherapy, can develop hepatic focal nodular hyperplasia. Cyclophosphamide and oxaliplatin are two chemotherapeutic agents that predispose to focal nodular hyperplasia development. Focal nodular hyperplasia occurs at shorter intervals in patients treated with cyclophosphamide.

3.
Bioelectrochemistry ; 160: 108776, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39018612

RESUMO

The levels of monoamine neurotransmitters (MNTs) including dopamine (DA), adrenaline (Adr), norepinephrine (NE) and 5-hydroxytryptamine (5-HT) in cells are useful indicators to explore the pathogenesis of MNTs-related diseases such as Alzheimer's disease, Parkinson's disease and depression. Herein, we constructed a novel electrochemical sensing platform based on multi-walled carbon nanotubes (MWCNTs)-amine functionalized Zr (IV) metal-organic framework (UIO-66-NH2) nanocomposite for the detection of multiple MNTs including DA, Adr, NE and 5-HT. The synergistic effect between MWCNTs and UIO-66-NH2 endowed the nanocomposite with high specific surface area, low interface impedance and superior electrocatalytic activity, which effectively enhance the electrochemical performance of the sensor. The MWCNTs-UIO-66-NH2 nanocomposite-based sensor exhibited satisfied sensitivity for the quantitative measurement of DA, Adr, NE and 5-HT, as well as low detection limit. The outstanding biocompatibility of the constructed sensor permitted it to be successfully implemented for the real-time monitoring of DA released by PC12 and C6 cells, providing a promising strategy for clinical diagnosis of MNTs-related disorders and diseases.


Assuntos
Estruturas Metalorgânicas , Nanocompostos , Nanotubos de Carbono , Neurotransmissores , Nanotubos de Carbono/química , Nanocompostos/química , Estruturas Metalorgânicas/química , Neurotransmissores/análise , Ratos , Células PC12 , Animais , Técnicas Eletroquímicas/métodos , Dopamina/análise , Limite de Detecção , Técnicas Biossensoriais/métodos , Serotonina/análise , Zircônio/química , Monoaminas Biogênicas/análise , Monoaminas Biogênicas/metabolismo , Norepinefrina/análise , Ácidos Ftálicos
4.
Anal Chem ; 96(29): 11716-11724, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-38986034

RESUMO

Assessment of critical quality attributes (CQAs) is an important aspect during the development of therapeutic monoclonal antibodies (mAbs). Attributes that affect either the target binding or Fc receptor engagement may have direct impacts on the drug safety and efficacy and thus are considered as CQAs. Native size exclusion chromatography (SEC)-based competitive binding assay has recently been reported and demonstrated significant benefits compared to conventional approaches for CQA identification, owing to its faster turn-around and higher multiplexity. Expanding on the similar concept, we report the development of a novel affinity-resolved size exclusion chromatography-mass spectrometry (AR-SEC-MS) method for rapid CQA evaluation in therapeutic mAbs. This method features wide applicability, fast turn-around, high multiplexity, and easy implementation. Using the well-studied Fc gamma receptor III-A (FcγRIIIa) and Fc interaction as a model system, the effectiveness of this method in studying the attribute-and-function relationship was demonstrated. Further, two case studies were detailed to showcase the application of this method in assessing CQAs related to antibody target binding, which included unusual N-linked glycosylation in a bispecific antibody and Met oxidation in a monospecific antibody, both occurring within the complementarity-determining regions (CDRs).


Assuntos
Anticorpos Monoclonais , Cromatografia em Gel , Espectrometria de Massas , Anticorpos Monoclonais/química , Cromatografia em Gel/métodos , Espectrometria de Massas/métodos , Humanos , Receptores de IgG/metabolismo , Cromatografia de Afinidade/métodos
5.
Eur Radiol ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017934

RESUMO

OBJECTIVES: To evaluate deep learning reconstruction (DLR)-based accelerated rectal magnetic resonance imaging (MRI) compared with standard MRI. MATERIALS AND METHODS: Patients with biopsy-confirmed rectal adenocarcinoma between November/2022 and May/2023 in a single centre were prospectively enrolled for an intra-individual comparison between standard fast spin-echo (FSEstandard) and DLR-based FSE (FSEDL) sequences. Quantitative and qualitative image quality metrics of the pre-therapeutic MRIs were evaluated in all patients; diagnostic performance and evaluating time for T-staging, N-staging, extramural vascular invasion (EMVI), and mesorectal fascia (MRF) status was further analysed in patients undergoing curative surgery, with histopathologic results as the diagnostic gold standard. RESULTS: A total of 117 patients were enrolled, with 60 patients undergoing curative surgery. FSEDL reduced the acquisition time by 65% than FSEstandard. FSEDL exhibited higher signal-to-noise ratios, contrast-to-noise ratio, and subjective scores (noise, tumour margin clarity, visualisation of bowel wall layering and MRF, overall image quality, and diagnostic confidence) than FSEstandard (p < 0.001). Reduced artefacts were observed in FSEDL for patients without spasmolytics (p < 0.05). FSEDL provided higher T-staging accuracy by junior readers than FSEstandard (reader 1, 58.33% vs 70.00%, p = 0.016; reader 3, 60.00% vs 76.67%, p = 0.021), with similar N-staging, EMVI, and MRF performance. No significant difference was observed for senior readers. FSEDL exhibited shorter diagnostic time in all readers' T-staging and overall evaluation, and junior readers' EMVI and MRF (p < 0.05). CONCLUSION: FSEDL provided improved image quality, reading time, and junior radiologists' T-staging accuracy than FSEstandard, while reducing the acquisition time by 65%. CLINICAL RELEVANCE STATEMENT: DLR is clinically applicable for rectal MRI, providing improved image quality with shorter scanning time, which may ease the examination burden. It is beneficial for diagnostic optimisation in improving junior radiologists' T-staging accuracy and reading time. KEY POINTS: The rising incidence of rectal cancer has demanded enhanced efficiency and quality in imaging examinations. FSEDL demonstrated superior image quality and had a 65% reduced acquisition time. FSEDL can improve the diagnostic accuracy of T-staging and reduce the reading time for assessing rectal cancer.

6.
Biosens Bioelectron ; 263: 116610, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39079209

RESUMO

Endothelial cells are sensitive to mechanical force and can convert it into biochemical signals to trigger mechano-chemo-transduction. Although conventional techniques have been used to investigate the subsequent modifications of cellular expression after mechanical stimulation, the in situ and real-time acquiring the transient biochemical information during mechanotransduction process remains an enormous challenge. In this work, we develop a flexible and multi-functional three-dimensional conductive scaffold that integrates cell growth, mechanical stimulation, and electrochemical sensing by in situ growth of enokitake-like Au nanowires on a three-dimensional porous polydimethylsiloxane substrate. The conductive scaffold possesses stable and desirable electrochemical sensing performance toward nitric oxide under mechanical deformation. The prepared e-AuNWs/CC/PDMS scaffold exhibits a good electrocatalytic ability to NO with a linear range from 2.5 nM to 13.95 µM and a detection limit of 8 nM. Owing to the excellent cellular compatibility, endothelial cells can be cultured directly on the scaffold and the real-time inducing and recording of nitric oxide secretion under physiological and pathological conditions were achieved. This work renders a reliable sensing platform for real-time monitoring cytomechanical signaling during endothelial mechanotransduction and is expected to promote other related biological investigations based on three-dimensional cell culture.


Assuntos
Técnicas Biossensoriais , Células Endoteliais , Ouro , Mecanotransdução Celular , Nanofios , Óxido Nítrico , Ouro/química , Nanofios/química , Técnicas Biossensoriais/instrumentação , Humanos , Óxido Nítrico/análise , Óxido Nítrico/metabolismo , Alicerces Teciduais/química , Células Endoteliais da Veia Umbilical Humana , Dimetilpolisiloxanos/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação
7.
Histochem Cell Biol ; 162(3): 187-202, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38849589

RESUMO

In the pathogenesis of osteoarthritis, various signaling pathways may influence the bone joint through a common terminal pathway, thereby contributing to the pathological remodeling of the joint. Semaphorins (SEMAs) are cell-surface proteins actively involved in and primarily responsible for regulating chondrocyte function in the pathophysiological process of osteoarthritis (OA). The significance of the SEMA family in OA is increasingly acknowledged as pivotal. This review aims to summarize the mechanisms through which different members of the SEMA family impact various structures within joints. The findings indicate that SEMA3A and SEMA4D are particularly relevant to OA, as they participate in cartilage injury, subchondral bone remodeling, or synovitis. Additionally, other elements such as SEMA4A and SEMA5A may also contribute to the onset and progression of OA by affecting different components of the bone and joint. The mentioned mechanisms demonstrate the indispensable role of SEMA family members in OA, although the detailed mechanisms still require further exploration.


Assuntos
Osteoartrite , Semaforinas , Semaforinas/metabolismo , Humanos , Osteoartrite/metabolismo , Osteoartrite/patologia , Animais , Cartilagem/metabolismo , Cartilagem/patologia
8.
Antioxidants (Basel) ; 13(5)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38790650

RESUMO

Bacterial infections trigger a multifaceted interplay between inflammatory mediators and redox regulation. Recently, accumulating evidence has shown that redox signaling plays a significant role in immune initiation and subsequent immune cell functions. This review addresses the crucial role of the thioredoxin (Trx) system in the initiation of immune reactions and regulation of inflammatory responses during bacterial infections. Downstream signaling pathways in various immune cells involve thiol-dependent redox regulation, highlighting the pivotal roles of thiol redox systems in defense mechanisms. Conversely, the survival and virulence of pathogenic bacteria are enhanced by their ability to counteract oxidative stress and immune attacks. This is achieved through the reduction of oxidized proteins and the modulation of redox-sensitive signaling pathways, which are functions of the Trx system, thereby fortifying bacterial resistance. Moreover, some selenium/sulfur-containing compounds could potentially be developed into targeted therapeutic interventions for pathogenic bacteria. Taken together, the Trx system is a key player in redox regulation during bacterial infection, and contributes to host-pathogen interactions, offering valuable insights for future research and therapeutic development.

9.
J Integr Plant Biol ; 66(7): 1408-1426, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38578160

RESUMO

Structural variations (SVs) are a feature of plant genomes that has been largely unexplored despite their significant impact on plant phenotypic traits and local adaptation to abiotic and biotic stress. In this study, we employed woolly grape (Vitis retordii), a species native to the tropical and subtropical regions of East Asia with both coastal and inland habitats, as a valuable model for examining the impact of SVs on local adaptation. We assembled a haplotype-resolved chromosomal reference genome for woolly grape, and conducted population genetic analyses based on whole-genome sequencing (WGS) data from coastal and inland populations. The demographic analyses revealed recent bottlenecks in all populations and asymmetric gene flow from the inland to the coastal population. In total, 1,035 genes associated with plant adaptive regulation for salt stress, radiation, and environmental adaptation were detected underlying local selection by SVs and SNPs in the coastal population, of which 37.29% and 65.26% were detected by SVs and SNPs, respectively. Candidate genes such as FSD2, RGA1, and AAP8 associated with salt tolerance were found to be highly differentiated and selected during the process of local adaptation to coastal habitats in SV regions. Our study highlights the importance of SVs in local adaptation; candidate genes related to salt stress and climatic adaptation to tropical and subtropical environments are important genomic resources for future breeding programs of grapevine and its rootstocks.


Assuntos
Vitis , Vitis/genética , Adaptação Fisiológica/genética , Genoma de Planta/genética , Genética Populacional , Polimorfismo de Nucleotídeo Único/genética , Tolerância ao Sal/genética , Variação Estrutural do Genoma/genética , Genômica , Genes de Plantas
10.
J Proteome Res ; 23(4): 1458-1470, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38483275

RESUMO

Breast cancer is the second leading cause of cancer-related death among women and a major source of brain metastases. Despite the increasing incidence of brain metastasis from breast cancer, the underlying mechanisms remain poorly understood. Altered glycosylation is known to play a role in various diseases including cancer metastasis. However, profiling studies of O-glycans and their isomers in breast cancer brain metastasis (BCBM) are scarce. This study analyzed the expression of O-glycans and their isomers in human breast cancer cell lines (MDA-MB-231, MDA-MB-361, HTB131, and HTB22), a brain cancer cell line (CRL-1620), and a brain metastatic breast cancer cell line (MDA-MB-231BR) using nanoLC-MS/MS, identifying 27 O-glycan compositions. We observed significant upregulation in the expression of HexNAc1Hex1NeuAc2 and HexNAc2Hex3, whereas the expression of HexNAc1Hex1NeuAc1 was downregulated in MDA-MB-231BR compared to other cell lines. In our isomeric analysis, we observed notable alterations in the isomeric forms of the O-glycan structure HexNAc1Hex1NeuAc1 in a comparison of different cell lines. Our analysis of O-glycans and their isomers in cancer cells demonstrated that changes in their distribution can be related to the metastatic process. We believe that our investigation will contribute to an enhanced comprehension of the significance of O-glycans and their isomers in BCBM.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/patologia , Espectrometria de Massas em Tandem , Neoplasias Encefálicas/metabolismo , Células MCF-7 , Linhagem Celular Tumoral , Polissacarídeos/química
11.
Cell Host Microbe ; 32(4): 588-605.e9, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38531364

RESUMO

Many powerful methods have been employed to elucidate the global transcriptomic, proteomic, or metabolic responses to pathogen-infected host cells. However, the host glycome responses to bacterial infection remain largely unexplored, and hence, our understanding of the molecular mechanisms by which bacterial pathogens manipulate the host glycome to favor infection remains incomplete. Here, we address this gap by performing a systematic analysis of the host glycome during infection by the bacterial pathogen Brucella spp. that cause brucellosis. We discover, surprisingly, that a Brucella effector protein (EP) Rhg1 induces global reprogramming of the host cell N-glycome by interacting with components of the oligosaccharide transferase complex that controls N-linked protein glycosylation, and Rhg1 regulates Brucella replication and tissue colonization in a mouse model of brucellosis, demonstrating that Brucella exploits the EP Rhg1 to reprogram the host N-glycome and promote bacterial intracellular parasitism, thereby providing a paradigm for bacterial control of host cell infection.


Assuntos
Brucella , Brucelose , Animais , Camundongos , Brucella/fisiologia , Proteômica , Brucelose/metabolismo , Retículo Endoplasmático/metabolismo
12.
PLoS Pathog ; 20(3): e1012110, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498560

RESUMO

The interaction between influenza A virus (IAV) and host proteins is an important process that greatly influences viral replication and pathogenicity. PB2 protein is a subunit of viral ribonucleoprotein (vRNP) complex playing distinct roles in viral transcription and replication. BAG6 (BCL2-associated athanogene 6) as a multifunctional host protein participates in physiological and pathological processes. Here, we identify BAG6 as a new restriction factor for IAV replication through targeting PB2. For both avian and human influenza viruses, overexpression of BAG6 reduced viral protein expression and virus titers, whereas deletion of BAG6 significantly enhanced virus replication. Moreover, BAG6-knockdown mice developed more severe clinical symptoms and higher viral loads upon IAV infection. Mechanistically, BAG6 restricted IAV transcription and replication by inhibiting the activity of viral RNA-dependent RNA polymerase (RdRp). The co-immunoprecipitation assays showed BAG6 specifically interacted with the N-terminus of PB2 and competed with PB1 for RdRp complex assembly. The ubiquitination assay indicated that BAG6 promoted PB2 ubiquitination at K189 residue and targeted PB2 for K48-linked ubiquitination degradation. The antiviral effect of BAG6 necessitated its N-terminal region containing a ubiquitin-like (UBL) domain (17-92aa) and a PB2-binding domain (124-186aa), which are synergistically responsible for viral polymerase subunit PB2 degradation and perturbing RdRp complex assembly. These findings unravel a novel antiviral mechanism via the interaction of viral PB2 and host protein BAG6 during avian or human influenza virus infection and highlight a potential application of BAG6 for antiviral drug development.


Assuntos
Vírus da Influenza A , Influenza Humana , Animais , Humanos , Camundongos , Antivirais/metabolismo , Vírus da Influenza A/genética , Chaperonas Moleculares/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/genética
13.
Quant Imaging Med Surg ; 14(1): 618-632, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38223086

RESUMO

Background: Very early distant metastasis (VEDM) for patients with colorectal cancer (CRC) following surgery suggests failure of local treatment strategy and few biomarkers are available for its effective risk stratification. This study aimed to explore the potential of quantitative dual-energy computed tomography (DECT) spectral parameters and build models to predict VEDM. Methods: Consecutive patients suspected of having CRC and with a clinical indication for enhanced CT from April 2021 to July 2022 at a single institution were prospectively enrolled to undertake spectral CT scanning. The spectral features were extracted by two reviewers and intraclass correlation coefficient (ICC) was used for interobserver agreement evaluation. A total of 16 spectral parameters, including unenhanced effective atomic number, triphasic iodine concentrations (ICs)/normalized ICs (NICs)-A/V/E/1/NIC-A/V/E/spectral curve slopes (λ-A/V/E), two arterial enhancement fractions (AEFs), and venous enhancement fraction (VEF), were determined for analysis. Patients with and without VEDM after surgery were matched using propensity score matching (PSM). The diagnostic performance was assessed using the area under the curve (AUC). Models of multiple modalities were generated. Results: In total, 222 patients were included (141 males, age range, 32-83 years) and 13 patients developed VEDM. Interobserver agreement ranged from good to excellent (ICC, 0.773-0.964). A total of three spectral parameters (VEF, λ-V, and 1/NIC-V) exhibited significant discriminatory ability (P<0.05) in predicting VEDM, with AUCs of 0.822 [95% confidence interval (CI): 0.667-0.926], 0.738 (95% CI: 0.573-0.866), and 0.713 (95% CI: 0.546-0.846) and optimal cutoff points of 67.16%, 2.46, and 2.44, respectively. The performance of these spectral parameters was validated in the entire cohort; the combined spectral model showed comparable efficiency to the combined clinical model [AUC, 0.771 (95% CI: 0.622-0.919) vs. 0.779 (95% CI: 0.663-0.894), P>0.05]; the clinical-spectral model achieved further improved AUC of 0.887 (95% CI: 0.812-0.962), which was significantly higher than the combined clinical model (P=0.015), yet not superior to the combined spectral model (P=0.078). Conclusions: Novel spectral parameters showed potential in predicting VEDM in CRC following surgery in this preliminary study, which were closely related with spectral perfusion in the venous phase. However, further studies with larger samples are warranted.

14.
Acad Radiol ; 31(4): 1367-1377, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37802671

RESUMO

RATIONALE AND OBJECTIVES: To develop and validate a nomogram based on intratumoral and peritumoral radiomics signatures for pretreatment prediction of distant metastasis-free survival (DMFS) in patients after neoadjuvant chemoradiotherapy (NCRT) with locally advanced rectal cancer (LARC). MATERIALS AND METHODS: This retrospective study included 230 patients (161 training cohort; 69 validation cohort) with LARC who underwent NCRT and surgery. Radiomics features were extracted on T2-weighted images from gross tumor volume (GTV) and volumes of 4-mm, 6-mm, and 8-mm peritumoral regions (PTV4, PTV6, and PTV8). The least absolute shrinkage and selection operator (LASSO)-Cox analysis were used for features selection and models construction. The performance of each model in predicting DMFS was evaluated by the Concordance index (C-index) and time-independent receiver operating characteristic curve (ROC). RESULTS: The PTV4 radiomics model demonstrated superior performance compared to the PTV6 and PTV8 radiomics models, with C-indexes of 0.750 and 0.703 in the training and validation cohorts, respectively. The nomogram was constructed by integrating the GTV radiomics signature, PTV4 radiomics signature, and relevant clinical characteristics, including CA19-9 level, clinical T stage, and clinical N stage. The nomogram achieved C-indexes of 0.831 and 0.748, with corresponding AUCs of 0.872 and 0.808 for 5-year DMFS in the training and validation cohorts, respectively. Kaplan-Meier analysis revealed that a cut-off value of 1.653 effectively stratified patients into high- and low-risk groups for DM (P < 0.001). CONCLUSION: The intra-peritumoral radiomics nomogram is a favorable tool for clinicians to develop personalized systemic treatment and intensive follow-up strategies to improve patient prognosis.


Assuntos
Segunda Neoplasia Primária , Neoplasias Retais , Humanos , Terapia Neoadjuvante , Radiômica , Estudos Retrospectivos , Imageamento por Ressonância Magnética , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/terapia , Quimiorradioterapia
15.
Abdom Radiol (NY) ; 49(2): 425-436, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37889266

RESUMO

PURPOSE: To develop a nomogram based on preoperative clinical and magnetic resonance imaging (MRI) features for the microvascular invasion (MVI) status in solitary intrahepatic mass-forming cholangiocarcinoma (sIMCC) and to evaluate whether it could predict recurrence-free survival (RFS). METHODS: We included 115 cases who experienced MRI examinations for sIMCC with R0 resection. The preoperative clinical and MRI features were extracted. Independent predictors related to MVI+ were evaluated by stepwise multivariate logistic regression, and a nomogram was constructed. A receiver operating characteristic (ROC) curve was used to assess the predictive ability. All patients were classified into high- and low-risk groups of MVI. Then, the correlations of the nomogram with RFS in patents with sIMCC were analyzed by Kaplan-Meier method. RESULTS: The occurrence rate of MVI+ was 38.3% (44/115). The preoperative independent predictors of MVI+ were carbohydrate antigen 19-9 > 37 U/ml, tumor size > 5 cm, and an ill-defined tumor boundary. Integrating these predictors, the nomogram exerted a favorable diagnostic performance with areas under the ROC curve of 0.767 (95% confidence interval [CI] 0.654-0.881) in the development cohort, and 0.760 (95% CI 0.591-0.929) in the validation cohort. In the RFS analysis, significant differences were observed between the high- and low-risk MVI groups (6-month RFS rates: 64.5% vs. 78.8% and 46.7% vs. 82.4% in the development and validation cohorts, respectively) (P < 0.05). CONCLUSIONS: A nomogram based on clinical and MRI features is a potential biomarker of MVI and may be a potent method to classify the risk of recurrence in patients with sIMCC.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Humanos , Nomogramas , Prognóstico , Colangiocarcinoma/diagnóstico por imagem , Colangiocarcinoma/cirurgia , Imageamento por Ressonância Magnética , Neoplasias dos Ductos Biliares/diagnóstico por imagem , Neoplasias dos Ductos Biliares/cirurgia , Ductos Biliares Intra-Hepáticos/diagnóstico por imagem , Estudos Retrospectivos , Invasividade Neoplásica
16.
Abdom Radiol (NY) ; 49(1): 21-33, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37815613

RESUMO

PURPOSE: This study aimed to establish a nomogram based on preoperative magnetic resonance imaging (MRI) features to predict the very early recurrence (VER, less than 6 months) of intrahepatic mass-forming cholangiocarcinoma (IMCC) after R0 resection. METHODS: This study enrolled a group of 193 IMCC patients from our institution between March 2010 and January 2022. Patients were allocated into the development cohort (n = 137) and the validation cohort (n = 56), randomly, and the preoperative clinical and MRI features were collected. Univariate and multivariate stepwise logistic regression assessments were adopted to assess predictors of VER. Nomogram was constructed and certificated in the validation cohort. The performance of the prediction nomogram was evaluated by its discrimination, calibration, and clinical utility. The performance of the nomogram was compared with the T stage of the American Joint Committee on Cancer (AJCC) 8th edition staging system. RESULTS: Fifty-three patients (27.5%) experienced VER of the tumor and 140 patients (72.5%) with non-VER, during the follow-up period. After multivariate stepwise logistic regression, number of lesions, diffuse hypoenhancement on arterial phase, necorsis and suspicious lymph nodes were independently associated with VER. The nomogram demonstrated significantly higher area under the curve (AUC) of 0.813 than T stage (AUC = 0.666, P = 0.006) in the development cohort, whereas in the validation cohort, the nomogram showed better discrimination performance, with an AUC of 0.808 than T stage (0.705) with no significantly difference (P = 0.230). Decision curve analysis reflected the clinical net benefit of the nomogram. CONCLUSION: The nomogram based on preoperative MRI features is a reliable tool to predict VER for patients with IMCC after R0 resection. This nomogram will be helpful to improve survival prediction and individualized treatment.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Neoplasias dos Ductos Biliares/diagnóstico por imagem , Neoplasias dos Ductos Biliares/cirurgia , Ductos Biliares Intra-Hepáticos/diagnóstico por imagem , Ductos Biliares Intra-Hepáticos/cirurgia , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/diagnóstico por imagem , Colangiocarcinoma/cirurgia
17.
Anal Chem ; 95(46): 16885-16891, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37937709

RESUMO

For the study of cell biology, real-time information on cell physiological processes will be more accurate and closer to the in vivo condition in a three-dimensional (3D) culture system. Although most reported 3D cell culture scaffolds can better mimic the in vivo dynamic microenvironment, the real-time analysis technique is deficient or lacking. Herein, a stretchable and conductive 3D scaffold is developed to construct an electrochemical biosensor for real-time monitoring of cell release in 3D culture under stimulation of drug stimulant and mechanical force. In our design, the polyurethane sponge (PU) dipped with conductive carbon ink (CC/PU) was used as a conductive scaffold, and gold nanoparticles (nano-Au) were electrodeposited on the CC/PU (nano-Au CC/PU) to improve the electrochemical sensing performance. The prepared nano-Au CC/PU scaffold exhibits a good electrocatalytic ability to H2O2 with a linear range from 20 nM to 43 µM. Due to the great biocompatibility, HeLa cells can be cultured directly on the nano-Au CC/PU and the in situ and real-time tracking of H2O2 secretion from cells was achieved. The results demonstrate that both the drug stimulant and mechanical force can rapidly activate the release of reactive oxygen species. This study indicates that the stretchable 3D sensing scaffold has good potential for cell biology research in an in vivo-like microenvironment and can be extensively used in the fields of tissue engineering, drug screening, and pathological research.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Células HeLa , Ouro , Peróxido de Hidrogênio , Técnicas Biossensoriais/métodos
18.
Eur J Radiol ; 169: 111190, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979460

RESUMO

PURPOSE: This study aimed to establish two nomograms for predicting overall survival (OS) and recurrence-free survival (RFS) in patients with solitary intrahepatic mass-forming cholangiocarcinoma (IMCC) based on preoperative magnetic resonance imaging (MRI) features. METHODS: This retrospective study included 120 consecutive patients who were diagnosed with solitary IMCC. Preoperative MRI and clinical features were collected. Based on the univariate and multivariate Cox regression analyses, two nomograms were constructed to predict OS and RFS, respectively. The effective performance of the nomograms was evaluated using concordance index (C-index). The prognostic stratification systems for OS and RFS were developed and used to classify patients into high- and low-risk groups. RESULTS: Suspicious lymph nodes, arterial phase (AP) enhancement patterns, and bile duct dilatation were independent predictors of OS, while suspicious lymph nodes, AP enhancement patterns, and necrosis were independent predictors of RFS. The nomograms achieved the C-index values of 0.705/0.710 for OS and 0.721/0.759 for RFS in the development/validation cohorts, which were significantly higher than those of the T and TNM stages (P < 0.05). Patients were stratified into high- and low-risk groups, the 1-year OS and RFS rates of high-risk patients were poorer than those of patients with low-risk in the development cohort (OS: 93.5% vs 76.3%, P < 0.001; RFS: 74.5% vs 22.4%, P < 0.001). Similar results were observed in the validation cohort. CONCLUSIONS: Two nomograms were constructed based on preoperative MRI features in patients with solitary IMCC for predicting the OS and RFS and facilitate further prognostic stratification.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Estudos Retrospectivos , Colangiocarcinoma/diagnóstico por imagem , Colangiocarcinoma/cirurgia , Colangiocarcinoma/patologia , Prognóstico , Imageamento por Ressonância Magnética/métodos , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/diagnóstico por imagem , Neoplasias dos Ductos Biliares/cirurgia , Neoplasias dos Ductos Biliares/patologia , Medição de Risco
19.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(11): 1186-1190, 2023 Nov 15.
Artigo em Chinês | MEDLINE | ID: mdl-37990466

RESUMO

The patient is a female infant, 4 months and 9 days old, who was admitted to the hospital due to recurrent fever, cough, and hepatomegaly for over a month. The patient was a healthy full-term infant with a normal birth history. At 2 months and 22 days after birth, she developed recurrent fever, cough, and respiratory distress. Chest imaging revealed diffuse bilateral lung lesions, and fiberoptic bronchoscopy showed interstitial changes in both lungs. These suggested the presence of interstitial lung disease. The patient also presented with hepatomegaly, anemia, hyperlipidemia, hypothyroidism, and malnutrition. Genetic testing indicated compound heterozygous variations in the MARS1 gene. This mutation can cause interstitial lung and liver disease, which is a severe rare disorder that typically manifests in infancy or early childhood. It is inherited in an autosomal recessive manner and characterized by early-onset respiratory insufficiency and liver disease in infants or young children. Since its first reported case in 2013, as of June 2023, only 38 related cases have been reported worldwide. This article reports the multidisciplinary diagnosis and treatment of interstitial lung and liver disease in an infant caused by MARS1 gene mutation.


Assuntos
Hepatopatias , Doenças Pulmonares Intersticiais , Feminino , Humanos , Lactente , Tosse , Hepatomegalia/patologia , Pulmão/patologia , Doenças Pulmonares Intersticiais/diagnóstico , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/patologia , Mutação
20.
Anal Chem ; 95(44): 16059-16069, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37843510

RESUMO

The complexity and heterogeneity of protein glycosylation present an analytical challenge to the studies of characterization and quantitation. Various LC-MS-based quantitation strategies have emerged in recent decades. Metabolic stable isotope labeling has been developed to enhance the accurate LC/MS-based quantitation between different cell lines. Stable isotope labeling by amino acids in a cell culture (SILAC) is the most widely used metabolic labeling method in proteomic analysis. However, it can only label the peptide backbone and is thus limited in glycomic studies. Here, we present a metabolic isotope labeling strategy, named GlyProSILC (Glycan Protein Stable Isotope Labeling in Cell Culture), that can label both the glycan motif and peptide backbone from the same batch of cells. It was performed by feeding cells with a heavy medium containing amide-15N-glutamine, 13C6-arginine (Arg6), and 13C6-15N2-lysine (Lys8). No significant change of cell line metabolism after GlyProSILC labeling was observed based on transcriptomic, glycomic, and proteomic data. The labeling conditions, labeling efficiency, and quantitation accuracy were investigated. After quantitation correction, we simultaneously quantified 62 N-glycans, 574 proteins, and 344 glycopeptides using the same batch of mixed 231BR/231 cell lines. So far, GlyProSILC provides an accurate and effective quantitation approach for glycomics, proteomics, and glycoproteomics in a cell culture system.


Assuntos
Glicômica , Proteômica , Marcação por Isótopo/métodos , Glicômica/métodos , Proteômica/métodos , Proteínas , Técnicas de Cultura de Células , Glicopeptídeos/metabolismo , Polissacarídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA