Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
J Agric Food Chem ; 72(19): 11268-11277, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38695399

RESUMO

Buttermilk is a potential material for the production of a milk fat globule membrane (MFGM) and can be mainly classified into two types: whole cream buttermilk and cheese whey cream buttermilk (WCB). Due to the high casein micelle content of whole cream buttermilk, the removal of casein micelles to improve the purity of MFGM materials is always required. This study investigated the effects of rennet and acid coagulation on the lipid profile of buttermilk rennet-coagulated whey (BRW) and buttermilk acid-coagulated whey (BAW) and compared them with WCB. BRW has significantly higher phospholipids (PLs) and ganglioside contents than BAW and WCB. The abundance of arachidonic acid (ARA)- and eicosapentaenoic acid (EPA)-structured PLs was higher in WCB, while docosahexaenoic acid (DHA)-structured PLs were higher in BRW, indicating that BRW and WCB intake might have a greater effect on improving cardiovascular conditions and neurodevelopment. WCB and BRW had a higher abundance of plasmanyl PL and plasmalogen PL, respectively. Phosphatidylcholine (PC) (28:1), LPE (20:5), and PC (26:0) are characteristic lipids among BRW, BAW, and WCB, and they can be used to distinguish MFGM-enriched whey from different sources.


Assuntos
Leitelho , Queijo , Cabras , Lipidômica , Soro do Leite , Animais , Leitelho/análise , Queijo/análise , Soro do Leite/química , Fosfolipídeos/análise , Fosfolipídeos/química , Glicolipídeos/química , Leite/química , Gotículas Lipídicas/química , Glicoproteínas/química , Glicoproteínas/análise , Lipídeos/química , Lipídeos/análise
2.
Eur J Med Chem ; 273: 116520, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38788299

RESUMO

The absence of effective active pockets makes traditional molecularly targeted drug strategies ineffective against 80 % of human disease-related proteins. The PROTAC technology effectively makes up for the deficiency of traditional molecular targeted drugs, which produces drug activity by degrading rather than inhibiting the target protein. The degradation of PROTAC is not only affected by POI ligand and E3 ligand, but by the selection of suitable linker which can play an important role in the efficiency and selectivity of the degradation. In the early exploring stage of the PROTAC, flexible chains were priorly applied as the linker of PROTAC. Although PROTAC with flexible chains as linkers sometimes perform well in vitro bioactivity evaluations, the introduction of lipophilic flexible chains reduces the hydrophilicity of these molecules, resulting in generally poor pharmacokinetic characteristics and pharmacological activities in vivo. In addition, recent reports have also shown that some PROTAC with flexible chains have some risks to causing hemolysis in vivo. Therefore, PROTAC with flexible chains show less druggability and large difficulty to entering the clinical trial stage. On the other hand, the application of nitrogen heterocycles in the design of PROTAC linkers has been widely reported in recent years. More and more reports have shown that the introduction of nitrogen heterocycles in the linker not only can effectively improves the metabolism of PROTAC in vivo, but also can enhance the degradation efficiency and selectivity of PROTAC. These PROTAC with nitrogen heterocycle linkers have attracted much attention of pharmaceutical chemists. The introduction of nitrogen heterocycles in the linker deserves priority consideration in the primary design of the PROTAC based on various druggabilities including pharmacokinetic characteristics and pharmacological activity. In this work, we summarized the optimization process and progress of nitrogen heterocyclic rings as the PROTAC linker in recent years. However, there were still limited understanding of how to discover, design and optimize PROTAC. For example, the selection of the types of nitrogen heterocycles and the optimization sites of this linker are challenges for researchers, choosing between four to six-membered nitrogen heterocycles, selecting from saturated to unsaturated ones, and even optimizing the length and extension angle of the linker. There is a truly need for theoretical explanation and elucidation of the PROTAC to guide the developing of more effective and valuable PROTAC.

3.
Eur J Med Chem ; 271: 116405, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38678823

RESUMO

PARPi have been explored and applied in the treatment of various cancers with remarkable efficacy, especially BRCA1/2 mutated ovarian, breast, prostate, and pancreatic cancers. However, PARPi renders inevitable drug resistance and showed high toxicity because of PARP-Trapping with long-term clinic tracking. To overcome the drug resistance and the high toxicity of PARPi, many novel methods have been developed including PROTACs. Being an event-driven technology, PROTACs needs a high affinity, low toxicity warhead with no steric hindrance in binding process. Veliparib shows the lowest PARP-Trapping effect but could hardly to be the warhead of PROTACs because of the strong steric hindrance. Other PARP1 inhibitors showed less steric hindrance but owns high PARP-Trapping effect. Thus, the development of novel warhead with high PARP1 affinity, low PARP1-Trapping, and no steric hindrance would be valuable. In this work, we reserved benzimidazole as the motif to reserve the low PARP1-Trapping effect and substituted the pyrrole by aromatic ring to avoiding the steric hindrance in PARP1 binding cave. Thus, a series of benzimidazole derivates were designed and synthesized, and some biological activities in vitro were evaluated including the inhibition for PARP1 enzyme and the PARP-Trapping effect using MDA-MB-436 cell line. Results showed that the compound 19A10 has higher PARP1 affinity(IC50 = 4.62 nM)) and similar low PARP-Trapping effect compared with Veliparib(IC50 (MDA-MB-436) >100 µM). Docking study showed that the compound 19A10 could avoiding the steric hindrance which was much better than Veliparib. So, the compound 19A10 could potentially be a perfect warhead for PARP1 degraders. Besides, because of the depletion of the PARP1 and the decreasing of the binding capability, we suppose that the PROTACs using 19A10 as the warhead would be no-PARP-Trapping effect. Furthermore, QSAR study showed that to develop novel compounds with high PARP1 binding affinity and low PARP-Trapping, we can choose the skeleton with substituent R1H, R2 = piperiazine, and R3 with large tPSA. And, if we want to develop the compounds with high PARP1 binding affinity and high PARP-Trapping which can possibly improve the lethality against tumor cells, we can choose the skeleton with substituent R1F, R2 = 3-methy-piperiazine, and R3 with large tPSA.


Assuntos
Antineoplásicos , Benzimidazóis , Ensaios de Seleção de Medicamentos Antitumorais , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Benzimidazóis/química , Benzimidazóis/farmacologia , Benzimidazóis/síntese química , Humanos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/química , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Estrutura Molecular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular
4.
Biol Trace Elem Res ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602649

RESUMO

Cadmium (Cd) is one of the most well-known toxic metals capable of entering the human body via the food chain, leading to serious health problems. Human gut microbes play a pivotal role in controlling Cd bioavailability and toxicity within the human gastrointestinal tract, primarily due to their capacity for Cd adsorption and metabolism. In this work, a Cd-resistant bacterial strain, Enterococcus faecalis strain ATCC19433 was isolated from human gut microbiota. Cd binding assays and comprehensive characterization analyses were performed, revealing the ability of strain ATCC19433 to remove Cd from the solution. Cd adsorption primarily occurred on the bacterial cell walls, which was ascribed to the exciting of functional groups on the bacterial surfaces, containing alkyl, amide II, and phosphate groups; meanwhile, Cd could enter cells, probably through transport channels or via diffusion. These results indicated that Cd removal by the strain was predominantly dependent on biosorption and bioaccumulation. Whole-genome sequencing analyses further suggested the probable mechanisms of biosorption and bioaccumulation, including Cd transport by transporter proteins, active efflux of Cd by cadmium efflux pumps, and mitigating oxidative stress-induced cell damage by DNA repair proteases. This study evaluated the Cd removal capability and mechanism of Enterococcus faecalis strain ATCC19433 while annotating the genetic functions related to Cd removal, which may facilitate the development of potential human gut strains for the removal of Cd.

5.
Curr Med Chem ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659263

RESUMO

Gastric cancer was the fifth most common cancer, and its drug treatment mainly included chemotherapy, targeted therapy, and immunotherapy. With the rise of immunotherapy in gastric cancer, small-molecule anti-gastric cancer drugs still have irreplaceable places because of many advantages, such as high stability and mass-productivity, high efficiency, and low cost. At present, the small-molecule anti-gastric cancer drugs in the clinic are constrained by their side effects. So, developing more novel anti-gastric cancer drugs with better efficacy and fewer side effects is urgently needed. Nitrogen-containing heterocycle molecules have attracted much attention from researchers due to their high biocompatibility, activity, and bioavailability, and they even could act with a unique mechanism. This review summarized various types of nitrogen-containing heterocycle antigastric cancer lead compounds from 2017 to 2022 in the last five years. Compared with monocyclic nitrogen-containing heterocycle and bicyclic nitrogen-containing heterocycle, the thick nitrogen-containing heterocycle applied as the skeleton not only showed high efficiency and low toxicity but also, interestingly, may have had some unique mechanism such as inhibition of aurora A and B kinases, etc. We propose two prospective and valuable strategies to develop more efficient candidates for anti-gastric cancer. One strategy was further optimized for some lead compounds mentioned in this review. The other strategy involved utilizing the "pseudo-natural products" concept proposed by Professor Wilhelm Waldmann, combining different nitrogen-containing heterocycle fragments in two and three-dimensional spaces to obtain new thick nitrogen-containing heterocycle skeletons. The strategy will contribute to the expansion of the thick nitrogenous heterocycle's framework, and it was expected that more novel mechanisms and more effective antigastric drugs could be found. These two strategies are expected to help researchers develop more anti-gastric cancer drugs with better potency and lower side effects.

6.
Ecotoxicol Environ Saf ; 274: 116209, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38492482

RESUMO

Macrophytes are crucial in maintaining the equilibrium of aquatic ecosystems. However, the pattern of macrophyte-derived caffeic acid (CA) release under heavy metal stress is yet to be fully understood. More importantly, due to its functional groups, CA may be a precursor to the formation of disinfection by-products, posing threats to water ecology and even safety of human drinking water. This study analyzed the responses of CA released by Vallisneria natans (V. natans) and Pistia stratiotes (P. Stratiotes) when exposed to Cu2+ and Mn2+ stress. Additionally, the CA levels in two constructed wetland ponds were detected and the degradation kinetics of CA during chlorination were investigated. Results indicated that CA occurred in two constructed wetland ponds with the concentrations of 44.727 µg/L (planted with V. natans) and 61.607 µg/L (planted with P. Stratiotes). Notably, heavy metal stress could significantly affect CA release from V. natans and P. Stratiotes. In general, under Cu2+ stress, V. natans secreted far more CA than under Mn2+ stress, the level could reach up to 435.303 µg/L. However, compared to V. natans, P. Stratiotes was less affected by Cu2+ and Mn2+ stress, releasing a maximum CA content of 55.582 µg/L under 5 mg/L Mn2+ stress. Aquatic macrophytes secreted more CA in response to heavy metal stresses and protected macrophytes from harmful heavy metals. CA degradation followed the pseudo first-order kinetics model, and the chlorination of CA conformed to a second-order reaction. The reaction rate significantly accelerated as NaClO, pH, temperature and Br- concentration increased. A new pathway for CA degradation and a new DBP 2, 2, 3, 3-tetrachloropropanal were observed. These findings pointed at a new direction into the adverse effect of CA, potentially paving the way for new strategies to solve drinking water safety problems.


Assuntos
Araceae , Ácidos Cafeicos , Água Potável , Metais Pesados , Poluentes Químicos da Água , Humanos , Ecossistema , Poluentes Químicos da Água/análise , Halogenação , Araceae/metabolismo , Metais Pesados/análise
7.
Se Pu ; 42(1): 13-23, 2024 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-38197203

RESUMO

A method for identifying specific peptide biomarkers of animal-milk-derived components in camel milk and its products was established using proteomics. Samples were prepared by defatting, protein extraction, and trypsin hydrolysis, and proteins and peptides were identified using ultra-high performance liquid chromatography-quadrupole/electrostatic orbitrap-high resolution mass spectrometry (UHPLC-Q/Exactive-HRMS) and Protein Pilot software. Twenty two peptide biomarkers from eight species (i.e., Camelus, Bos taurus, Bubalus bubalis, Bos grunniens/Bos mutus, Capra hircus, Ovis aries, Equus asinus, Equus caballus) were identified by comparing the basic local alignment search tool (BLAST) with the Uniprot database. Verification of these marker peptides were performed quantitatively using a UHPLC-triple-quadrupole mass-spectrometry (QqQ-MS) system by multiple reaction monitoring (MRM). The pretreatment method of casein in camel milk was optimized, such as defatting, protein precipitation, and re-dissolving buffer solution. The effects of various mass-spectrometry parameters, such as atomization gas, heating- and drying-gas flow rates, and desolvation-tube (DL) and ion-source-interface temperatures on ion-response intensity were optimized. Camel milk signature peptides were detected in a mixture of milk from other seven species to ensure specificity for the selected biomarker peptides. The signature peptides of seven other species were also detected in camel milk. No mutual interference between the selected biomarker peptides of the various species was observed. Adulterated camel milk and milk powder were also quantitatively studied by adding 0, 2.5%, 5%, 10%, 25%, 50%, 75%, and 100% bovine milk or goat milk to camel milk. Similarly, the same mass proportion of bovine milk powder or goat milk powder was added to camel milk powder. A quantitative standard curve for adulteration was constructed by plotting the peak areas of characteristic cow or goat peptide segments in each mixed sample against the mass percentage of the added adulterant. The adulteration standard curves exhibited good linearity, with correlation coefficients (r2) greater than 0.99. The limits of detection and quantification (LODs and LOQs, respectively) of the method were determined as three- and ten-times the signal-to-noise ratio (S/N). The minimum adulteration LODs of bovine milk and goat milk in camel milk were determined to be 0.35% and 0.49%, respectively, and the minimum LOQs were 1.20% and 1.69%, respectively. The minimum adulteration LODs of bovine milk powder and goat milk powder in camel milk powder were determined to be 0.68% and 0.73%, respectively, and the minimum LOQs were 1.65% and 2.45%, respectively. The accuracy of the adulteration quantification method was investigated by validating the quantitative detection results for 1∶1∶1 (mass ratio) mixtures of camel milk, bovine milk, and goat milk, as well as camel-milk powder, bovine milk powder, and goat-milk powder, which revealed that this method exhibits good linearity, strong anti-interference, high sensitivity, and good repeatability for adulterated liquid-milk/solid-milk-powder samples. The adulteration results for both liquid milk and milk powder are close to the theoretical values. Finally, 11 actual commercially available samples, including five camel-milk and six camel-milk-powder samples were analyzed, which revealed that only camel signature peptides were detected in 10 samples, while camel and bovine signature peptides were both detected in one camel-milk-powder sample. The ingredient list of the latter sample revealed that it contained whole milk powder from an unidentified source; therefore, we infer that the bovine signature peptides originate from the whole milk powder. These signature peptides also demonstrate the necessity and practical significance of establishing this identification method.


Assuntos
Camelus , Leite , Feminino , Animais , Bovinos , Cavalos , Cromatografia Líquida de Alta Pressão , Pós , Espectrometria de Massas em Tandem , Cabras , Peptídeos , Biomarcadores
8.
Biomed Phys Eng Express ; 10(3)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38181453

RESUMO

Uncertainties in the relative biological effectiveness (RBE) of proton remains a major barrier to the biological optimization of proton therapy. A large amount of experimental data suggest that proton RBE is variable. As an evolving Monte Carlo code toolkit, Geant4-DNA is able to simulate the initial DNA damage caused by particle beams through physical and chemical interactions at the nanometer scale over a short period of time. This contributes to evaluating the radiobiological effects induced by ionizing radiation. Based on the Geant4-DNA toolkit, this study constructed a DNA geometric model containing 6.32Gbp, simulated the relationship between radiochemical yields (G-values) and their corresponding chemical constructors, and calculated a detailed calculation of the sources of damage and the complexity of damage in DNA strand breaks. The damage model constructed in this study can simulate the relative biological effectiveness (RBE) in the proton Bragg peak region. The results indicate that: (1) When the electron energy is below 400 keV, the yield of OH·account for 18.1% to 25.3% of the total water radiolysis yields. (2) Under the influence of histone clearance function, the yield of indirect damage account for over 72.93% of the yield of DNA strand breaks (SBs). When linear energy transfer (LET) increased from 29.79 (keV/µm) to 64.29 (keV/µm), the yield of double strand breaks (DSB) increased from 17.27% to 32.65%. (3) By investigating the effect of proton Bragg peak depth on the yield of direct DSB (DSBdirect) and total DSB (DSBtotal), theRBEDSBtotandRBEDSBdirlevels of cells show that the RBE value of protons reaches 2.2 in the Bragg peak region.


Assuntos
Terapia com Prótons , Prótons , Eficiência Biológica Relativa , Quebras de DNA de Cadeia Dupla , DNA
9.
Phytomedicine ; 123: 155214, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38134861

RESUMO

BACKGROUND: Gemcitabine is a first-line chemotherapeutic agent for pancreatic cancer (PC); however, most patients who receive adjuvant gemcitabine rapidly develop resistance and recurrence. Cancer-associated fibroblasts (CAFs) are a crucial component of the tumor stroma that contribute to gemcitabine-resistance. There is thus an urgent need to find a novel therapeutic strategy to improve the efficacy of gemcitabine in PC cells under CAF-stimulation. PURPOSE: To investigate if shikonin potentiates the therapeutic effects of gemcitabine in PC cells with CAF-induced drug resistance. METHODS: PC cell-stimulated fibroblasts or primary CAFs derived from PC tissue were co-cultured with PC cells to evaluate the ability of shikonin to improve the chemotherapeutic effects of gemcitabine in vitro and in vivo. Glucose uptake assay, ATP content analysis, lactate measurement, real-time PCR, immunofluorescence staining, western blot, and plasmid transfection were used to investigate the underlying mechanism. RESULTS: CAFs were innately resistant to gemcitabine, but shikonin suppressed the PC cell-induced transactivation and proliferation of CAFs, reversed CAF-induced resistance, and restored the therapeutic efficacy of gemcitabine in the co-culture system. In addition, CAFs underwent a reverse Warburg effect when co-cultured with PC cells, represented by enhanced aerobic glycolytic metabolism, while shikonin reduced aerobic glycolysis in CAFs by reducing their glucose uptake, ATP concentration, lactate production and secretion, and glycolytic protein expression. Regarding the mechanism underlying these sensitizing effects, shikonin suppressed monocarboxylate transporter 4 (MCT4) expression and cellular membrane translocation to inhibit aerobic glycolysis in CAFs. Overexpression of MCT4 accordingly reversed the inhibitory effects of shikonin on PC cell-induced transactivation and aerobic glycolysis in CAFs, and reduced its sensitizing effects. Furthermore, shikonin promoted the effects of gemcitabine in reducing the growth of tumors derived from PC cells and CAF co-inoculation in BALB/C mice, with no significant systemic toxicity. CONCLUSION: These results indicate that shikonin reduced MCT4 expression and activation, resulting in inhibition of aerobic glycolysis in CAFs and overcoming CAF-induced gemcitabine resistance in PC. Shikonin is a promising chemosensitizing phytochemical agent when used in combination with gemcitabine for PC treatment. The results suggest that disrupting the metabolic coupling between cancer cells and stromal cells might provide an attractive strategy for improving gemcitabine efficacy.


Assuntos
Fibroblastos Associados a Câncer , Naftoquinonas , Neoplasias Pancreáticas , Animais , Camundongos , Humanos , Gencitabina , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Neoplasias Pancreáticas/patologia , Ácido Láctico/metabolismo , Ácido Láctico/farmacologia , Ácido Láctico/uso terapêutico , Glucose/metabolismo , Trifosfato de Adenosina/metabolismo
10.
Expert Opin Drug Metab Toxicol ; 19(12): 1023-1032, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38145500

RESUMO

BACKGROUND: Celastrol is known as one of the most medicinally valuable compounds. However, the pharmaceutical application of celastrol is significantly limited due to high toxicity, while there are few reports on the mechanism of toxicity. METHODS: This study searched for possible toxic metabolites through phase I in vitro metabolism and glutathione capture experiments. Then in vivo metabolism experiments in mice and rats were conducted to look for metabolites in vivo. Finally, mice in vivo toxicity experiment was conducted to verify the toxicity of different doses of celastrol to mice. RESULTS: In the in vivo and in vitro metabolism experiments, we found 7 phase I metabolites in vitro, 9 glutathione conjugation metabolites in vitro, and 20 metabolites in vivo. The metabolic soft points of celastrol could be the quinone methyl structure at C3-OH and C6. In vivo toxicity experiments show that celastrol causes weight loss, diarrhea, gastrointestinal tract and liver inflammation in mice. CONCLUSIONS: This study analyzed the metabolites and possible metabolic soft spots of celastrol, and its hepatotoxicity and gastrointestinal toxicity were demonstrated through in vivo studies for the first time. The results might provide an important basis for potential structural modification to increase the druggability of celastrol.


Assuntos
Trato Gastrointestinal , Triterpenos , Ratos , Camundongos , Humanos , Animais , Triterpenos Pentacíclicos , Espectrometria de Massas , Glutationa/metabolismo , Triterpenos/efeitos adversos , Triterpenos/metabolismo
11.
J Med Invest ; 70(3.4): 524-529, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37940544

RESUMO

OBJECTIVES: The aim of the present study was to introduce a novel three-dimensional computed tomography (3DCT)-based three-column classification (named "MLP classification system") of intertrochanteric fractures and evaluate its reproducibility and reliability. METHODS: From September 2020 to September 2022, a total of 258 consecutive patients (60 male, 198 female;mean age 81.3 years) with intertrochanteric fractures were included in this study. The fracture in each case was assessed using a novel three-dimensional computed tomography-based three-column classification. Two examiners tested the intra and inter-observer reliability of this new classification system using kappa variance. RESULTS: The intertrochanteric region was divided into the medial column, lateral column, and posterior column. Intertrochanteric fractures were documented as M0/1/2L0/1/2/3P0/1/2/3. All fractures were classifiable into the new classification system. The intra-observer kappa values were 0.91 and 0.89, while the inter-observer kappa value was 0.82, both indicating almost perfect reliability. CONCLUSION: This novel 3DCT-based MLP classification system for intertrochanteric fractures is comprehensive, and reproducible with good agreement. It is based on proximal femur biomechanic characteristics and traumatic mechanism, contributing to formulating more reasonable treatment protocols involving various late-model internal fixation devices. J. Med. Invest. 70 : 524-529, August, 2023.


Assuntos
Fraturas do Quadril , Imageamento Tridimensional , Humanos , Masculino , Feminino , Idoso de 80 Anos ou mais , Reprodutibilidade dos Testes , Variações Dependentes do Observador , Tomografia Computadorizada por Raios X/métodos , Fraturas do Quadril/diagnóstico por imagem , Fraturas do Quadril/cirurgia
12.
J Agric Food Chem ; 71(42): 15553-15568, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37815401

RESUMO

The aim of this study was to investigate the changes in human and animal milk oligosaccharides over lactation. In total, 89, 97, 115, and 71 oligosaccharides were identified in human, bovine, goat, and camel milk. The number of common oligosaccharides between camel and human milk was the highest (16 and 17 in transitional and mature milk). With respect to the absolute concentration of eight oligosaccharides (2'-FL, 3-FL, α3'-GL, LNT, LNnT, 3'-SL, 6'-SL, and DSL), 2'-FL, 3'-FL, LNT, and LNnT were much higher in human than three animal species. 3'-SL had a similar concentration in bovine colostrum (322.2 µg/mL) and human colostrum (321.0 µg/mL), followed by goat colostrum (105.1 µg/mL); however, it had the highest concentration in camel mature milk (304.5 µg/mL). The ratio of 6'-SL and 3'-SL (1.77) in goat colostrum was similar to that in human colostrum (1.68), followed by bovine colostrum (0.13). In terms of changes of eight oligosaccharides over lactation, they all decreased with the increase of lactation in bovine and goat milk; however, α3'-GL, 2'-FL, and 3-FL increased in camel species, and LNT increased first and then decreased over lactation in human milk. This study provides a better understanding of the variation of milk oligosaccharides related to lactation and species.


Assuntos
Camelus , Leite , Humanos , Gravidez , Feminino , Bovinos , Animais , Lactação , Colostro , Leite Humano , Cabras , Oligossacarídeos
13.
J Agric Food Chem ; 71(37): 13906-13919, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37695236

RESUMO

Although numerous studies indicate that formula-fed infants are more prone to obesity than breastfed ones, the underlying reasons have not been fully elucidated. This study aimed to determine the impact of human milk fat substitutes (HMFS) on the lipid metabolism of first-weaned Sprague Dawley rats. The findings revealed that administering HMFS did not affect the body weight of the rats (control: 298.38 ± 26.73 g, OPO (1,3-dioleic acid-2-palmitoyl triglyceride): 287.82 ± 19.85 g and HMFS: 302.31 ± 19.21 g), but it significantly decreased their body fat content (control: 28.70 ± 1.17 cm3, OPO: 22.51 ± 1.10 cm3 and HMFS: 14.90 ± 0.95 cm3) (p < 0.05). Lipidome analysis revealed that glycerophospholipid was the primary differentiating lipid present in the liver of HMFS-fed rats. The abundance of Bacteroides significantly increased in the intestine of HMFS-fed rats (p < 0.05), and their short-chain fatty acid (SCFA) content significantly increased (p < 0.05). The multi-omics correlation analysis established the "Bacteroidetes-SCFAs-Glycerophospholipid pathway" as a potential mechanism by which administering HMFS affects body fat buildup in first-weaned rats. Additionally, it was found that HMFS administration significantly promoted lipid metabolism in the rat liver at both the gene and protein levels (p < 0.05). These findings serve to underscore the nutritional benefits of HMFS for infants.


Assuntos
Substitutos da Gordura , Metabolismo dos Lipídeos , Lactente , Ratos , Humanos , Animais , Leite Humano , Ratos Sprague-Dawley , Glicerofosfolipídeos
14.
Water Sci Technol ; 88(6): 1594-1607, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37768757

RESUMO

We investigated the effects of ultrasound-assisted ethylenediaminetetraacetic acid (EDTA) and citric acid (CA) washing on heavy metal (HM) removal, residual HM mobility, and sewage sludge quality. EDTA and CA washing of sewage sludge successfully reduced the total concentration of HMs after one round of washing, but the mobility of residual HMs increased significantly. The eluate had a high concentration of HMs and nutrients (nitrogen, phosphorus, potassium, and total organic carbon), although the nutritional content of the sludge remained high. The three-phase ratio of the sludge after six rounds of washing by CA was closest to the ideal three-phase ratio, and the degree of influence on the physical structure of the soil after a land application was reduced, according to the fluctuation of generalized soil structure index (GSSI) and soil three-phase structure distance (STPSD) values. The results indicate that CA as an environmental-friendly washing agent can be the superior choice for sludge HM washing; single washing of sewage sludge may increase the mobility of residual HMs, so multiple washings should be considered for land application of sludge.


Assuntos
Metais Pesados , Poluentes do Solo , Ácido Edético/química , Esgotos/química , Ácido Cítrico/química , Solo , Metais Pesados/química , Poluentes do Solo/análise
15.
J Dairy Sci ; 106(6): 3791-3806, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37164856

RESUMO

Yak milk is rich in essential milk proteins of nutritional and therapeutic value. In this study, whey proteins of milk from 3 yak breeds (Gannan, GN; Huanhu, HH; Maiwa, MW) in China were comprehensively identified and compared using a data-independent acquisition quantitative proteomics approach. A total of 632 proteins were identified in yak milk whey samples, in which immune-related proteins were abundant. Compared with other milks, more proteins were involved in oxidation-reduction process and with ATP binding. In addition, we identified 96, 155, and 164 differentially expressed proteins (DEP) for GN versus HH, GN versus MW, and HH versus MW, respectively. "Phagosome" and "complement and coagulation cascades" were the most significant pathways for DEP of GN versus HH and GN or HH versus MW yak milk based on the Kyoto Encyclopedia of Genes and Genomes pathway analysis. Protein-protein interaction network analysis showed that DEP for the 3 comparisons had significant biological interactions but were associated with different functions. The results provide useful information on yak milk from different breeds in China, and elucidate the biological functions of yak milk proteins.


Assuntos
Leite , Proteômica , Bovinos , Animais , Proteínas do Soro do Leite/análise , Proteômica/métodos , Leite/química , Proteínas do Leite/análise , China
16.
Front Nutr ; 10: 1119768, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252231

RESUMO

Introduction: In this paper, microbiota analysis was determined to analyze the structure and difference of intestinal microbiota between LBMJ (late-onset breast milk jaundice) infants and healthy individuals. Methods: We collected fresh fecal samples from 13 infants with LBMJ and 13 healthy individuals, then determined the intestinal microbiota by 16 s rRNA sequencing. The differences of microbiota structure, diversity and functional characteristics between the two groups were analyzed, and the correlation between dominant genus and TcB (transcutaneous bilirubin) value was calculated. Results: In this study, there were no significant differences in maternal demographic characteristics, neonatal status and macronutrients in breast milk between the two groups (p > 0.05). There are differences in the structure of intestinal microbiota between LBMJ and the control group. At the genus level, the relative abundance of Klebsiella in the case group is high (p < 0.05). At the same time, correlation analysis indicates that the abundance of Klebsiella is positively correlated with TcB value. The intestinal microbiota richness and diversity (Alpha diversity and Beta diversity) of the two groups were significantly different (p < 0.05). LEfSe analysis showed that 25 genera including Klebsiella was significantly enriched in the LBMJ infants, and the other 17 species are enriched in the control group. Functional prediction analysis indicated that 42 metabolic pathways may be related to the occurrence of LBMJ. Conclusion: In conclusion, characteristic changes are seen in intestinal microbiota compositions between LBMJ infants and the healthy controls. Klebsiella is closely associated with the severity of the disease, which may be due to enhanced ß-glucuronidase activity.

17.
Life Sci Alliance ; 6(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37208194

RESUMO

The correct intraflagellar transport (IFT) assembly at the ciliary base and the IFT turnaround at the ciliary tip are key for the IFT to perform its function, but we still have poor understanding about how these processes are regulated. Here, we identify WDR31 as a new ciliary protein, and analysis from zebrafish and Caenorhabditis elegans reveals the role of WDR31 in regulating the cilia morphology. We find that loss of WDR-31 together with RP-2 and ELMD-1 (the sole ortholog ELMOD1-3) results in ciliary accumulations of IFT Complex B components and KIF17 kinesin, with fewer IFT/BBSome particles traveling along cilia in both anterograde and retrograde directions, suggesting that the IFT/BBSome entry into the cilia and exit from the cilia are impacted. Furthermore, anterograde IFT in the middle segment travels at increased speed in wdr-31;rpi-2;elmd-1 Remarkably, a non-ciliary protein leaks into the cilia of wdr-31;rpi-2;elmd-1, possibly because of IFT defects. This work reveals WDR31-RP-2-ELMD-1 as IFT and BBSome trafficking regulators.


Assuntos
Proteínas de Caenorhabditis elegans , Cílios , Proteínas Ativadoras de GTPase , Proteínas de Peixe-Zebra , Animais , Transporte Biológico , Caenorhabditis elegans/metabolismo , Cílios/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Peixe-Zebra , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Peixe-Zebra/metabolismo
18.
Br J Nutr ; 130(9): 1537-1547, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37066691

RESUMO

Breast milk leptin plays a potential role in preventing childhood obesity. However, the associations of breast milk leptin with maternal metabolism in pregnancy and dietary patterns during lactation are still unclear. We aimed to explore associations of breast milk leptin with maternal metabolic profiles in pregnancy and dietary patterns during lactation. A total of 332 participants were recruited for this retrospective cohort study. Breast milk samples were collected at approximately 6 weeks postpartum. Breast milk leptin and twenty-three metabolic profiles in pregnancy were measured in this study. A semi-quantitative FFQ was used to gather dietary information during lactation. Both principal component analysis and the diet balance index were used to derive dietary patterns. Among twenty-three maternal metabolic profiles, maternal serum glucose (ß = 1·61, P = 0·009), γ-glutamyl transferase (ß = 0·32, P = 0·047) and albumin (ß = -2·96, P = 0·044) in pregnancy were correlated with breast milk leptin. All dietary patterns were associated with breast milk leptin. Given the joint effects of maternal metabolism in pregnancy and dietary patterns during lactation, only diet quality distance was significantly associated with leptin concentrations in breast milk (low level v. almost no diet problem: ß = -0·46, P = 0·011; moderate/high level v. almost no diet problem: ß = -0·43, P = 0·035). In conclusion, both maternal metabolism in pregnancy and dietary patterns during lactation were associated with breast milk leptin. Maternal diet balance during lactation was helpful to improve breast milk leptin concentration.


Assuntos
Leite Humano , Obesidade Infantil , Gravidez , Feminino , Criança , Humanos , Leite Humano/química , Leptina , Estudos Retrospectivos , Lactação , Dieta , Metaboloma
19.
Chem Biol Drug Des ; 101(6): 1335-1347, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36752693

RESUMO

Poly (ADP-ribose) polymerase-1 (PARP-1) inhibitors have been successfully applied in the clinical treatment of various cancer. Side effects and drug resistant cases were reported, and more effective PARP-1 inhibitors were required. However, studies on the AD site of PARP-1 inhibitors are currently incomplete. Therefore, to synthesize more potential candidate PARP-1 inhibitors and disclose some AD site SAR of the PARP-1 inhibitors, herein, a series of 2-phenyl-benzimidazole-4-carboxamide derivatives using different saturated nitrogen-contained heterocycles as linker group (6a-6t) have been designed, synthesized, and evaluated PARP-1 inhibitory activity and proliferation inhibitory against BRCA-1 mutant MDA-MB-436 cell line in vitro. The results showed 6b (IC50 = 8.65 nM) exhibited the most PARP-1 enzyme inhibitory activity comparable with Veliparib (IC50 = 15.54 nM) and Olaparib (IC50 = 2.77 nM); 6m exhibited the strongest MDA-MB-436 cell anti-proliferation activity (IC50 = 25.36 ± 6.06 µM) comparable with Olaparib (IC50 = 23.89 ± 3.81 µM). The compounds 6b, 6r, and 6m could be potential candidates for effective PARP-1 inhibitors and valuable for further optimization. The analysis of activity data also showed that the holistically anti-proliferation activity of the 1,4-diazepane group was about~twofold than that of the piperazine group. Meanwhile, the terminal 3-methyl-furanyl group exhibited the most robust PARP-1 inhibitory and anti-proliferation activity. It is hoped that the results could benefitable for further optimization of PARP-1 inhibitors. Furthermore, we note that some compounds (6d,6g,6n,6p,6s) showed poor PARP-1 inhibitory (>500 nM) but relatively good anti-proliferation activity, which indicates the proliferation inhibitory mechanism against MDA-MB-436 cell line was worth investigating in-depth.


Assuntos
Antineoplásicos , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Relação Estrutura-Atividade , Aminoimidazol Carboxamida/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células
20.
Oncogene ; 42(3): 184-197, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36400971

RESUMO

Tamoxifen is a first-line therapeutic drug for oestrogen-receptor positive breast cancer; however, like other therapeutics, its clinical use is limited by acquired resistance. Tamoxifen-resistant cells have demonstrated enhanced aerobic glycolysis; however, the mechanisms underlying this upregulation remain unclear. Here, we demonstrated that G-protein coupled oestrogen receptor (GPER) was involved in the upregulation of aerobic glycolysis via induction of hypoxia-inducible factor-1α (HIF-1α) expression and transcriptional activity in tamoxifen-resistant cells. Additionally, GPER stabilized HIF-1α through inhibiting its hydroxylation and ubiquitin-mediated degradation, which were associated with upregulation of C-terminal hydrolase-L1 (UCH-L1), downregulation of prolyl hydroxylase 2 (PHD2) and von Hippel-Lindau tumour suppressor protein (pVHL), induction of HIF-1α/UCH-L1 interaction, and suppression of HIF-1α/PHD2-pVHL association. The GPER/HIF-1α axis was functionally responsible for regulating tamoxifen sensitivity both in vitro and in vivo. Moreover, there was a positive correlation between GPER and HIF-1α expression in clinical breast cancer tissues, and high levels of GPER combined with nuclear HIF-1α indicated poor overall survival. High levels of the GPER/HIF-1α axis were also correlated with shorter relapse-free survival in patients receiving tamoxifen. Hence, our findings support a critical role of GPER/HIF-1α axis in the regulation of aerobic glycolysis in tamoxifen-resistant cells, offering a potential therapeutic target for tamoxifen-resistant breast cancer.


Assuntos
Neoplasias da Mama , Tamoxifeno , Humanos , Feminino , Tamoxifeno/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Recidiva Local de Neoplasia , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Glicólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA