Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Plant J ; 116(5): 1325-1341, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37596913

RESUMO

Sensing of environmental challenges, such as mechanical injury, by a single plant tissue results in the activation of systemic signaling, which attunes the plant's physiology and morphology for better survival and reproduction. As key signals, both calcium ions (Ca2+ ) and hydrogen peroxide (H2 O2 ) interplay with each other to mediate plant systemic signaling. However, the mechanisms underlying Ca2+ -H2 O2 crosstalk are not fully revealed. Our previous study showed that the interaction between glycolate oxidase and catalase, key enzymes of photorespiration, serves as a molecular switch (GC switch) to dynamically modulate photorespiratory H2 O2 fluctuations via metabolic channeling. In this study, we further demonstrate that local wounding induces a rapid shift of the GC switch to a more interactive state in systemic leaves, resulting in a sharp decrease in peroxisomal H2 O2 levels, in contrast to a simultaneous outburst of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived apoplastic H2 O2 . Moreover, the systemic response of the two processes depends on the transmission of Ca2+ signaling, mediated by glutamate-receptor-like Ca2+ channels 3.3 and 3.6. Mechanistically, by direct binding and/or indirect mediation by some potential biochemical sensors, peroxisomal Ca2+ regulates the GC switch states in situ, leading to changes in H2 O2 levels. Our findings provide new insights into the functions of photorespiratory H2 O2 in plant systemic acclimation and an optimized systemic H2 O2 signaling via spatiotemporal interplay between the GC switch and NADPH oxidases.


Assuntos
Oxirredutases do Álcool , Plantas , Catalase/metabolismo , Plantas/metabolismo , Oxirredutases do Álcool/metabolismo , Receptores de Glutamato , Peróxido de Hidrogênio/metabolismo
2.
Plant Physiol ; 193(2): 1381-1394, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37437116

RESUMO

Photorespiration begins with the oxygenation reaction catalyzed by Rubisco and is the second highest metabolic flux in plants after photosynthesis. Although the core biochemical pathway of photorespiration has been well characterized, little is known about the underlying regulatory mechanisms. Some rate-limiting regulation of photorespiration has been suggested to occur at both the transcriptional and posttranslational levels, but experimental evidence is scarce. Here, we found that mitogen-activated protein kinase 2 (MAPK2) interacts with photorespiratory glycolate oxidase and hydroxypyruvate reductase, and the activities of these photorespiratory enzymes were regulated via phosphorylation modifications in rice (Oryza sativa L.). Gas exchange measurements revealed that the photorespiration rate decreased in rice mapk2 mutants under normal growth conditions, without disturbing photosynthesis. Due to decreased photorespiration, the levels of some key photorespiratory metabolites, such as 2-phosphoglycolate, glycine, and glycerate, significantly decreased in mapk2 mutants, but those of photosynthetic metabolites were not altered. Transcriptome assays also revealed that the expression levels of some flux-controlling genes in photorespiration were significantly downregulated in mapk2 mutants. Our findings provide molecular evidence for the association between MAPK2 and photorespiration and suggest that MAPK2 regulates the key enzymes of photorespiration at both the transcriptional and posttranslational phosphorylation levels in rice.


Assuntos
Oryza , Oryza/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Fotossíntese/genética , Plantas/metabolismo , Dióxido de Carbono/metabolismo
3.
Plant Physiol Biochem ; 201: 107887, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37442051

RESUMO

Huanglongbing (HLB), spread by the Asian citrus psyllid (ACP), is a widespread, devastating disease that causes significant losses in citrus production. Therefore, controlling the ACP infestation and HLB infection is very important for citrus production. The aim of our study was to identify any citrus volatile which could be used as a repellent or less attractant towards ACP, and to envisage the potential of this strategy to control HLB spread. The present study identified a terpene synthase (TPS)-encoding gene CsTPS21 in citrus plants, and this gene was predicted to encode a monoterpene synthase and had an amino acid sequence similar to ß-ocimene synthase. CsTPS21 was significantly upregulated by ACP infestation and methyl jasmonic acid (MeJA) treatment but downregulated by salicylic acid (SA). Further heterologous gene expression studies in yeast cells and tobacco plants indicated that the protein catalyzed the formation of ß-ocimene, which acted as an ACP repellent. Detailed analysis of tobacco overexpressing CsTPS21 showed that CsTPS21 synthesizing ß-ocimene regulated jasmonic acid (JA)-associated pathways by increasing the JA accumulation and inducing the JA biosynthetic gene expression to defend against insect infestation. These findings provide a basis to plan strategies to manage HLB in the field using ß-ocimene and CsTPS21 as candidates.


Assuntos
Citrus , Hemípteros , Animais , Citrus/genética , Citrus/metabolismo , Doenças das Plantas/genética
4.
Plant J ; 115(5): 1316-1330, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37235700

RESUMO

Increasing concentration of CO2 has significant impacts on many biological processes in plants, and its impact is closely associated with changes in the ratio of photosynthesis to photorespiration. Studies have reported that high CO2 can promote carbon fixing and alleviate plant oxidative damage in response to environmental stresses. However, the effect of high CO2 on fatty acid (FA) metabolism and cellular redox balance in FA-deficient plants is rarely reported. In this study, we identified a high-CO2 -requiring mutant cac2 through forward genetic screening. CAC2 encodes biotin carboxylase, which is one of the subunits of plastid acetyl-CoA carboxylase and participates in de novo FA biosynthesis. Null mutation of CAC2 is embryonic lethal. A point mutation of CAC2 in cac2 mutants produces severe defects in chloroplast development, plant growth and photosynthetic performance. These morphological and physiological defects were largely absent under high CO2 conditions. Metabolite analyses showed that FA contents in cac2-1 leaves were decreased, while photorespiratory metabolites, such as glycine and glycolate, did not significantly change. Meanwhile, cac2 exhibited higher reactive oxygen species (ROS) levels and mRNA expression of stress-responsive genes than the wild-type, indicating that cac2 plants may suffer oxidative stress under ambient CO2 conditions. Elevated CO2 significantly increased FA contents, especially C18:3-FA, and reduced ROS accumulation in cac2-1 leaves. We propose that stress mitigation by high CO2 in cac2 could be due to increased FA levels by promoting carbon assimilation, and the prevention of over-reduction due to decreased photorespiration.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Oxirredução , Fotossíntese/fisiologia , Estresse Oxidativo , Folhas de Planta/metabolismo , Plantas/metabolismo , Carbono/metabolismo , Ácidos Graxos/metabolismo
5.
Plant J ; 112(6): 1429-1446, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36382906

RESUMO

The homeostasis of hydrogen peroxide (H2 O2 ), a key regulator of basic biological processes, is a result of the cooperation between its generation and scavenging. However, the mechanistic basis of this balance is not fully understood. We previously proposed that the interaction between glycolate oxidase (GLO) and catalase (CAT) may serve as a molecular switch that modulates H2 O2 levels in plants. In this study, we demonstrate that the GLO-CAT complex in plants exists in different states, which are dynamically interchangeable in response to various stimuli, typically salicylic acid (SA), at the whole-plant level. More crucially, changes in the state of the complex were found to be closely linked to peroxisomal H2 O2 fluctuations, which were independent of the membrane-associated NADPH oxidase. Furthermore, evidence suggested that H2 O2 channeling occurred even in vitro when GLO and CAT worked cooperatively. These results demonstrate that dynamic changes in H2 O2 levels are physically created via photorespiratory metabolic channeling in plants, and that such H2 O2 fluctuations may serve as signals that are mechanistically involved in the known functions of photorespiratory H2 O2 . In addition, our study also revealed a new way for SA to communicate with H2 O2 in plants.


Assuntos
Peróxido de Hidrogênio , Plantas , Peróxido de Hidrogênio/metabolismo , Plantas/metabolismo , Homeostase
6.
Front Plant Sci ; 13: 952246, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874007

RESUMO

Endoplasmic reticulum-associated degradation (ERAD) is a key cellular process for degrading misfolded proteins. It was well known that an asparagine (N)-linked glycan containing a free α1,6-mannose residue is a critical ERAD signal created by Homologous to α-mannosidase 1 (Htm1) in yeast and ER-Degradation Enhancing α-Mannosidase-like proteins (EDEMs) in mammals. An earlier study suggested that two Arabidopsis homologs of Htm1/EDEMs function redundantly in generating such a conserved N-glycan signal. Here we report that the Arabidopsis irb1 (reversal of bri1) mutants accumulate brassinosteroid-insensitive 1-5 (bri1-5), an ER-retained mutant variant of the brassinosteroid receptor BRI1 and are defective in one of the Arabidopsis Htm1/EDEM homologs, AtEDEM1. We show that the wild-type AtEDEM1, but not its catalytically inactive mutant, rescues irb1-1. Importantly, an insertional mutation of the Arabidopsis Asparagine-Linked Glycosylation 3 (ALG3), which causes N-linked glycosylation with truncated glycans carrying a different free α1,6-mannose residue, completely nullifies the inhibitory effect of irb1-1 on bri1-5 ERAD. Interestingly, an insertional mutation in AtEDEM2, the other Htm1/EDEM homolog, has no detectable effect on bri1-5 ERAD; however, it enhances the inhibitory effect of irb1-1 on bri1-5 degradation. Moreover, AtEDEM2 transgenes rescued the irb1-1 mutation with lower efficacy than AtEDEM1. Simultaneous elimination of AtEDEM1 and AtEDEM2 completely blocks generation of α1,6-mannose-exposed N-glycans on bri1-5, while overexpression of either AtEDEM1 or AtEDEM2 stimulates bri1-5 ERAD and enhances the bri1-5 dwarfism. We concluded that, despite its functional redundancy with AtEDEM2, AtEDEM1 plays a predominant role in promoting bri1-5 degradation.

7.
Sci Rep ; 12(1): 6736, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468979

RESUMO

Moderate leaf rolling helps to form the ideotype of rice. In this study, six independent OsRUS1-GFP overexpression (OsRUS1-OX) transgenic rice lines with rapid and dynamic leaf rolling phenotype in response to sunlight were constructed. However, the mechanism is unknown. Here, RNA-Seq approach was utilized to identify differentially expressed genes between flag leaves of OsRUS1-OX and wildtype under sunlight. 2920 genes were differentially expressed between OsRUS1-OX and WT, of which 1660 upregulated and 1260 downregulated. Six of the 16 genes in GO: 0009415 (response to water stimulus) were significantly upregulated in OsRUS1-OX. The differentially expressed genes between WT and OsRUS1-OX were assigned to 110 KEGG pathways. 42 of the 222 genes in KEGG pathway dosa04075 (Plant hormone signal transduction) were differentially expressed between WT and OsRUS1-OX. The identified genes in GO:0009415 and KEGG pathway dosa04075 were good candidates to explain the leaf rolling phenotype of OsRUS1-OX. The expression patterns of the 15 genes identified by RNA-Seq were verified by qRT-PCR. Based on transcriptomic and qRT-PCR analysis, a mechanism for the leaf rolling phenotype of OsRUS1-OX was proposed. The differential expression profiles between WT and OsRUS1-OX established by this study provide important insights into the molecular mechanism behind the leaf rolling phenotype of OsRUS1-OX.


Assuntos
Oryza , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Folhas de Planta/metabolismo , Transcriptoma
8.
Physiol Plant ; 174(3): e13692, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35482934

RESUMO

Improving the grain yield of rice is a central goal of basic and applied scientific research. Here, we identified an anion transporter, OsAT1, localized in the endoplasmic reticulum and Golgi. OsAT1 is highly expressed in flag, stem, and sheath as monitored using qRT-PCR and pOsAT1::GUS. Thousand-grain weight, grain weight per plant, and content of starch were significantly increased in OsAT1 knock-down mutants (OsAT1-Ri) but significantly decreased in OsAT1 overexpressed lines (OsAT1-OE). In addition, the grain weight per plant increased by 6.17% to 6.78% in OsAT1-RNAi lines, whereas it decreased by 45.93% to 46.76% in OsAT1-OE lines, compared to wild-type. Moreover, the copper content was noticeably reduced in flag leaf of OsAT1-Ri lines and increased in OsAT1-OE lines. RNA-sequencing analysis of OsAT1-OE lines revealed that the genes related to starch biosynthesis and metabolism pathway were enriched in the down-regulated category. Thus, our results suggest that knock-down of OsAT1 in rice possibly reduces copper accumulation and improves the accumulation of storage starch, hence, increasing the grain size and weight. OsAT1 may be a useful gene to consider for cereal breeding programs.


Assuntos
Oryza , Ânions , Cobre , Grão Comestível/genética , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Amido/metabolismo
9.
BMC Plant Biol ; 21(1): 326, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34229625

RESUMO

BACKGROUND: Glycolate oxidase (GLO) is not only a key enzyme in photorespiration but also a major engine for H2O2 production in plants. Catalase (CAT)-dependent H2O2 decomposition has been previously reported to be involved in the regulation of IAA biosynthesis. However, it is still not known which mechanism contributed to the H2O2 production in IAA regulation. RESULTS: In this study, we found that in glo mutants of rice, as H2O2 levels decreased IAA contents significantly increased, whereas high CO2 abolished the difference in H2O2 and IAA contents between glo mutants and WT. Further analyses showed that tryptophan (Trp, the precursor for IAA biosynthesis in the Trp-dependent biosynthetic pathway) also accumulated due to increased tryptophan synthetase ß (TSB) activity. Moreover, expression of the genes involved in Trp-dependent IAA biosynthesis and IBA to IAA conversion were correspondingly up-regulated, further implicating that both pathways contribute to IAA biosynthesis as mediated by the GLO-dependent production of H2O2. CONCLUSION: We investigated the function of GLO in IAA signaling in different levels from transcription, enzyme activities to metabolic levels. The results suggest that GLO-dependent H2O2 signaling, essentially via photorespiration, confers regulation over IAA biosynthesis in rice plants.


Assuntos
Oxirredutases do Álcool/metabolismo , Peróxido de Hidrogênio/metabolismo , Ácidos Indolacéticos/metabolismo , Oryza/enzimologia , Oxirredutases do Álcool/genética , Vias Biossintéticas/efeitos da radiação , Respiração Celular/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Modelos Biológicos , Mutação/genética , Oryza/genética , Oryza/efeitos da radiação , Peroxissomos/metabolismo , Peroxissomos/efeitos da radiação , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triptofano/metabolismo
10.
Plant Physiol ; 186(2): 1254-1268, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33713137

RESUMO

Exposure to ultraviolet B radiation (UV-B) stress can have serious effects on the growth and development of plants. Germin-like proteins (GLPs) may be involved in different abiotic and biotic stress responses in different plants, but little is known about the role of GLPs in UV-B stress response and acclimation in plants. In the present study, knockout of GLP 8-14 (OsGLP1) using the CRISPR/Cas9 system resulted in mutant rice (Oryza sativa L.) plants (herein called glp1) that exhibited UV-B-dependent formation of lesion mimic in leaves. Moreover, glp1 grown under solar radiation (including UV-B) showed decreased plant height and increased leaf angle, but we observed no significant differences in phenotypes between wild-type (WT) plants and glp1 grown under artificial light lacking UV-B. Fv/Fm, Y (II) and the expression of many genes, based on RNA-seq analysis, related to photosynthesis were also only reduced in glp1, but not in WT, after transfer from a growth cabinet illuminated with artificial white light lacking UV-B to growth under natural sunlight. The genes-associated with flavonoid metabolism as well as UV resistance locus 8 (OsUVR8), phytochrome interacting factor-like 15-like (OsPIF3), pyridoxal 5'-phosphate synthase subunit PDX1.2 (OsPDX1.2), deoxyribodipyrimidine photolyase (OsPHR), and deoxyribodipyrimidine photolyase family protein-like (OsPHRL) exhibited lower expression levels, while higher expression levels of mitogen-activated protein kinase 5-like (OsMPK3), mitogen-activated protein kinase 13-like (OsMPK13), and transcription factor MYB4-like (OsMYB4) were observed in glp1 than in WT after transfer from a growth cabinet illuminated with artificial white light to growth under natural sunlight. Therefore, mutations in OsGLP1 resulted in rice plants more sensitive to UV-B and reduced expression of some genes for UV-B protection, suggesting that OsGLP1 is involved in acclimation to UV-B radiation.


Assuntos
Aclimatação , Glicoproteínas/metabolismo , Oryza/genética , Proteínas de Plantas/metabolismo , Glicoproteínas/genética , Luz , Oryza/fisiologia , Oryza/efeitos da radiação , Fotossíntese/efeitos da radiação , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Raios Ultravioleta
11.
J Exp Bot ; 72(7): 2584-2599, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33483723

RESUMO

The photorespiratory pathway is highly compartmentalized. As such, metabolite shuttles between organelles are critical to ensure efficient photorespiratory carbon flux. Arabidopsis plastidic glycolate/glycerate translocator 1 (PLGG1) has been reported as a key chloroplastic glycolate/glycerate transporter. Two homologous genes, OsPLGG1a and OsPLGG1b, have been identified in the rice genome, although their distinct functions and relationships remain unknown. Herein, our analysis of exogenous expression in oocytes and yeast shows that both OsPLGG1a and OsPLGG1b have the ability to transport glycolate and glycerate. Furthermore, we demonstrate in planta that the perturbation of OsPLGG1a or OsPLGG1b expression leads to extensive accumulation of photorespiratory metabolites, especially glycolate and glycerate. Under ambient CO2 conditions, loss-of-function osplgg1a or osplgg1b mutant plants exhibited significant decreases in photosynthesis efficiency, starch accumulation, plant height, and crop productivity. These morphological defects were almost entirely recovered when the mutant plants were grown under elevated CO2 conditions. In contrast to osplgg1a, osplgg1b mutant alleles produced a mild photorespiratory phenotype and had reduced accumulation of photorespiratory metabolites. Subcellular localization analysis showed that OsPLGG1a and OsPLGG1b are located in the inner and outer membranes of the chloroplast envelope, respectively. In vitro and in vivo experiments revealed that OsPLGG1a and OsPLGG1b have a direct interaction. Our results indicate that both OsPLGG1a and OsPLGG1b are chloroplastic glycolate/glycerate transporters required for photorespiratory metabolism and plant growth, and that they may function as a singular complex.


Assuntos
Cloroplastos/metabolismo , Ácidos Glicéricos/metabolismo , Glicolatos/metabolismo , Oryza , Proteínas de Plantas/metabolismo , Dióxido de Carbono/metabolismo , Oryza/genética , Fotossíntese , Plastídeos/metabolismo , Isoformas de Proteínas/metabolismo
12.
Mol Plant ; 13(12): 1802-1815, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33075506

RESUMO

Several photorespiratory bypasses have been introduced into plants and shown to improve photosynthesis by increasing chloroplastic CO2 concentrations or optimizing energy balance. We recently reported that an engineered GOC bypass could increase photosynthesis and productivity in rice. However, the grain yield of GOC plants was unstable, fluctuating in different cultivation seasons because of varying seed setting rates. In this study, we designed a synthetic photorespiratory shortcut (the GCGT bypass) consisting of genes encoding Oryza sativa glycolate oxidase and Escherichia coli catalase, glyoxylate carboligase, and tartronic semialdehyde reductase. The GCGT bypass was guided by an optimized chloroplast transit peptide that targeted rice chloroplasts and redirected 75% of carbon from glycolate metabolism to the Calvin cycle, identical to the native photorespiration pathway. GCGT transgenic plants exhibited significantly increased biomass production and grain yield, which were mainly attributed to enhanced photosynthesis due to increased chloroplastic CO2 concentrations. Despite the increases in biomass production and grain yield, GCGT transgenic plants showed a reduced seed setting rate, a phenotype previously reported for the GOC plants. Integrative transcriptomic, physiological, and biochemical assays revealed that photosynthetic carbohydrates were not transported to grains in an efficient manner, thereby reducing the seed setting rate. Taken together, our results demonstrate that the GCGT photorespiratory shortcut confers higher yield by promoting photosynthesis in rice, mainly through increasing chloroplastic CO2 concentrations.


Assuntos
Biomassa , Luz , Oryza/crescimento & desenvolvimento , Oryza/efeitos da radiação , Fotossíntese/efeitos da radiação , Sementes/crescimento & desenvolvimento , Transporte Biológico/efeitos da radiação , Metabolismo dos Carboidratos/efeitos da radiação , Dióxido de Carbono/metabolismo , Respiração Celular/efeitos da radiação , Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Cloroplastos/ultraestrutura , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Metaboloma/efeitos da radiação , Oryza/genética , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Folhas de Planta/ultraestrutura , Plantas Geneticamente Modificadas , Sementes/efeitos da radiação , Transcriptoma/genética
13.
BMC Plant Biol ; 20(1): 357, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727356

RESUMO

BACKGROUND: The glyoxylate reductase (GR) multigene family has been described in various plant species, their isoforms show different biochemical features in plants. However, few studies have addressed the biological roles of GR isozymes, especially for rice. RESULTS: Here, we report a detailed analysis of the enzymatic properties and physiological roles of OsGR1 and OsGR2 in rice. The results showed that both enzymes prefer NADPH to NADH as cofactor, and the NADPH-dependent glyoxylate reducing activity represents the major GR activity in various tissues and at different growth stages; and OsGR1 proteins were more abundant than OsGR2, which is also a major contributor to total GR activities. By generating and characterizing various OsGR-genetically modified rice lines, including overexpression, single and double-knockout lines, we found that no phenotypic differences occur among the various transgenic lines under normal growth conditions, while a dwarfish growth phenotype was noticed under photorespiration-promoted conditions. CONCLUSION: Our results suggest that OsGR1 and OsGR2, with distinct enzymatic characteristics, function redundantly in detoxifying glyoxylate in rice plants under normal growth conditions, whereas both are simultaneously required under high photorespiration conditions.


Assuntos
Oxirredutases do Álcool/metabolismo , Oryza/fisiologia , Oxirredutases do Álcool/genética , Regulação da Expressão Gênica de Plantas , Glioxilatos/metabolismo , Isoenzimas/metabolismo , NAD/metabolismo , NADP/metabolismo , Oryza/enzimologia , Fotossíntese , Plantas Geneticamente Modificadas
14.
Int J Mol Sci ; 21(2)2020 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-31963632

RESUMO

Banana (Musa acuminata, AAA group) is a representative climacteric fruit with essential nutrients and pleasant flavors. Control of its ripening determines both the fruit quality and the shelf life. NAC (NAM, ATAF, CUC2) proteins, as one of the largest superfamilies of transcription factors, play crucial roles in various functions, especially developmental processes. Thus, it is important to conduct a comprehensive identification and characterization of the NAC transcription factor family at the genomic level in M. acuminata. In this article, a total of 181 banana NAC genes were identified. Phylogenetic analysis indicated that NAC genes in M. acuminata, Arabidopsis, and rice were clustered into 18 groups (S1-S18), and MCScanX analysis disclosed that the evolution of MaNAC genes was promoted by segmental duplication events. Expression patterns of NAC genes during banana fruit ripening induced by ethylene were investigated using RNA-Seq data, and 10 MaNAC genes were identified as related to fruit ripening. A subcellular localization assay of selected MaNACs revealed that they were all localized to the nucleus. These results lay a good foundation for the investigation of NAC genes in banana toward the biological functions and evolution.


Assuntos
Perfilação da Expressão Gênica/métodos , Musa/fisiologia , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Sequenciamento Completo do Genoma/métodos , Núcleo Celular/genética , Etilenos/farmacologia , Evolução Molecular , Armazenamento de Alimentos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Família Multigênica , Musa/efeitos dos fármacos , Musa/genética , Filogenia
16.
Mol Plant ; 12(12): 1598-1611, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31295628

RESUMO

WD40 repeat-containing proteins (WD40 proteins) serve as versatile scaffolds for protein-protein interactions, modulating a variety of cellular processes such as plant stress and hormone responses. Here we report the identification of a WD40 protein, XIW1 (for XPO1-interacting WD40 protein 1), which positively regulates the abscisic acid (ABA) response in Arabidopsis. XIW1 is located in the cytoplasm and nucleus. We found that it interacts with the nuclear transport receptor XPO1 and is exported by XPO1 from the nucleus. Mutation of XIW1 reduces the induction of ABA-responsive genes and the accumulation of ABA Insensitive 5 (ABI5), causing mutant plants with ABA-insensitive phenotypes during seed germination and seedling growth, and decreased drought stress resistance. ABA treatment upregulates the expression of XIW1, and both ABA and abiotic stresses promote XIW1 accumulation in the nucleus, where it interacts with ABI5. Loss of XIW1 function results in rapid proteasomal degradation of ABI5. Taken together, these findings suggest that XIW1 is a nucleocytoplasmic shuttling protein and plays a positive role in ABA responses by interacting with and maintaining the stability of ABI5 in the nucleus.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Núcleo Celular/metabolismo , Repetições WD40 , Transporte Ativo do Núcleo Celular , Arabidopsis/fisiologia , Secas , Germinação , Estabilidade Proteica , Sementes/crescimento & desenvolvimento , Estresse Fisiológico
17.
BMC Plant Biol ; 19(1): 105, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30885124

RESUMO

BACKGROUND: NCA1 (NO CATALASE ACTIVITY 1) was recently identified in Arabidopsis as a chaperone protein to regulate catalase (CAT) activity through maintaining the folding of CAT. The gene exists mainly in higher plants; some plants, such as Arabidopsis, contain only one NCA1 gene, whereas some others such as rice harbor two copies. It is not yet understood whether and how both isoforms have functioned to regulate CAT activity in those two-copy-containing plant species. RESULTS: In this study, we first noticed that the spatiotemporal expression patterns of NCA1a and NCA1b were very similar in rice plants. Subsequent BiFC and yeast three-hybrid experiments demonstrated that both NCA1a and NCA1b show mutually exclusive, rather than simultaneous, interaction with CAT. For a further functional analysis, nca1a and nca1b single mutants or double mutants of rice were generated by CRISPR/Cas9. Analysis on these mutants under both normal and salinity stress conditions found that, as compared with WT, either nca1a or nca1b single mutant showed no difference at phenotypes and CAT activities, whereas the double mutants constantly displayed very low CAT activity (about 5%) and serious lesion phenotypes. CONCLUSIONS: These results suggest that NCA1a and NCA1b show mutually exclusive interaction with CAT to regulate CAT activity in a functionally-redundant manner in rice.


Assuntos
Catalase/metabolismo , Oryza/enzimologia , Oryza/genética , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Salino
18.
Plant Cell Rep ; 38(6): 731-739, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30903268

RESUMO

KEY MESSAGE: OsIAAGLU could catalyze the reaction of IAA with glucose to generate IAA-glucose. Overexpression of OsIAAGLU in rice resulted in altered rice shoot architecture and root gravitropism. The distribution and levels of indole-3-acetic acid (IAA) within plant tissues are well known to play vital roles in plant growth and development. An important mechanism of regulating free IAA levels in monocots is formation of IAA ester conjugates. In this study, a cytosol-localized protein encoded by the rice gene of indole-3-acetic acid glucosyltransferase (OsIAAGLU) was found to catalyze the reaction of free IAA with glucose to generate IAA-glucose. Expression of OsIAAGLU could be induced by IAA and NAA. The number of tillers and leaf angle was significantly increased with a concomitant decrease in plant height and panicle length in the transgenic rice lines overexpressing OsIAAGLU compared to the wild-type (WT) plants. Phenotypes of iaaglu mutants constructed using the CRISPR/Cas9 system had no obvious differences with WT plants. Furthermore, overexpression of OsIAAGLU resulted in reduced sensitivity to IAA/NAA and altered gravitropic response of the roots in the transgenic plants. Free IAA contents in the leaves, root tips, and lamina joint of OsIAAGLU-overexpressing transgenic lines were lower than those of WT plants. These results support that OsIAAGLU could play a regulatory role in IAA homeostasis and rice architecture.


Assuntos
Glucose/química , Glucose/farmacologia , Ácidos Indolacéticos/química , Ácidos Indolacéticos/farmacologia , Oryza/efeitos dos fármacos , Oryza/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Oryza/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética
19.
Mol Plant ; 12(2): 199-214, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30639120

RESUMO

Over the past few years, three photorespiratory bypasses have been introduced into plants, two of which led to observable increases in photosynthesis and biomass yield. However, most of the experiments were carried out using Arabidopsis under controlled environmental conditions, and the increases were only observed under low-light and short-day conditions. In this study, we designed a new photorespiratory bypass (called GOC bypass), characterized by no reducing equivalents being produced during a complete oxidation of glycolate into CO2 catalyzed by three rice-self-originating enzymes, i.e., glycolate oxidase, oxalate oxidase, and catalase. We successfully established this bypass in rice chloroplasts using a multi-gene assembly and transformation system. Transgenic rice plants carrying GOC bypass (GOC plants) showed significant increases in photosynthesis efficiency, biomass yield, and nitrogen content, as well as several other CO2-enriched phenotypes under both greenhouse and field conditions. Grain yield of GOC plants varied depending on seeding season and was increased significantly in the spring. We further demonstrated that GOC plants had significant advantages under high-light conditions and that the improvements in GOC plants resulted primarily from a photosynthetic CO2-concentrating effect rather than from improved energy balance. Taken together, our results reveal that engineering a newly designed chloroplastic photorespiratory bypass could increase photosynthetic efficiency and yield of rice plants grown in field conditions, particularly under high light.


Assuntos
Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Engenharia Genética , Luz , Oryza/citologia , Oryza/genética , Fotossíntese/genética , Dióxido de Carbono/metabolismo , Respiração Celular/genética , Respiração Celular/efeitos da radiação , Metabolismo Energético/genética , Metabolismo Energético/efeitos da radiação , Oryza/metabolismo , Oryza/efeitos da radiação , Fenótipo , Fotossíntese/efeitos da radiação , Plantas Geneticamente Modificadas
20.
Plant Cell Physiol ; 59(12): 2526-2535, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30137570

RESUMO

Photorespiration is an essential process for plant photosynthesis, development and growth in aerobic conditions. Recent studies have shown that photorespiration is an open system integrated with the plant primary metabolism network and intracellular redox systems, though the mechanisms of regulating photorespiration are far from clear. Through a forward genetic method, we identified a photorespiratory mutant pr1 (photorespiratory related 1), which produced a chlorotic and smaller photorespiratory growth phenotype with decreased chlorophyll content and accumulation of glycine and serine in ambient air. Morphological and physiological defects in pr1 plants can be largely abolished under elevated CO2 conditions. Genetic mapping and complementation confirmed that PR1 encodes an FtsH (Filamentation temperature-sensitive H)-like protein, FtsHi5. Reduced FtsHi5 expression in DEX-induced RNAi transgenic plants produced a similar growth phenotype with pr1 (ftsHi5-1). Transcriptome analysis suggested a changed expression pattern of redox-related genes and an increased expression of senescence-related genes in DEX: RNAi-FtsHi5 seedlings. Together with the observation that decreased accumulation of D1 and D2 proteins of photosystem II (PSII) and over-accumulation of reactive oxygen species (ROS) in ftsHi5 mutants, we hypothesize that FtsHi5 functions in maintaining the cellular redox balance and thus regulates photorespiratory metabolism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Fotossíntese , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Respiração Celular , Clorofila/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Mutação/genética , Oxirredução , Fenótipo , Complexo de Proteína do Fotossistema II/metabolismo , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio/metabolismo , Tilacoides/metabolismo , Tilacoides/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA