Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Talanta ; 276: 126200, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38735243

RESUMO

Herein, a dual-emission Eu metal-organic framework (Eu-MOF) is prepared and used as the ratiometric fluorescence probe for ultrasensitive detection of aminoglycoside antibiotics (AGs). Due to the strong hydrogen bond interactions between AGs and Eu-MOF, the blue emission is enhanced while the red emission has little fluctuation in Eu-MOF with the addition of AGs, thus a good linear relationship with the logarithm of AGs concentrations from 0.001 to 100 µg/mL can be established for quantitative analysis. Good sensitivity with the detection limit of 0.33 ng/mL for apramycin, 0.32 ng/mL for amikacin and 0.30 ng/mL for kanamycin is achieved. The proposed assay demonstrates good selectivity and applicability for determination of AGs in real milk and honey samples. The Eu-MOF materials are further fabricated as fluorescent test papers for facile visual detection. The as-established ratio fluorescence platform offers a portable and economical way for rapid monitoring AGs residues in complex food samples.


Assuntos
Aminoglicosídeos , Corantes Fluorescentes , Contaminação de Alimentos , Mel , Estruturas Metalorgânicas , Leite , Espectrometria de Fluorescência , Estruturas Metalorgânicas/química , Leite/química , Mel/análise , Corantes Fluorescentes/química , Aminoglicosídeos/análise , Aminoglicosídeos/química , Contaminação de Alimentos/análise , Espectrometria de Fluorescência/métodos , Európio/química , Animais , Antibacterianos/análise , Ligantes , Limite de Detecção , Análise de Alimentos/métodos , Canamicina/análise
2.
Se Pu ; 42(5): 445-451, 2024 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-38736387

RESUMO

Mycotoxins are toxic secondary metabolites produced by fungal species that can cause acute, subacute, and chronic toxicity in humans and animals. Thus, these toxins pose a significant threat to health and safety. Owing to the lack of effective antimold measures in the agricultural industry, feed ingredients such as corn, peanuts, wheat, barley, millet, nuts, oily feed, forage, and their byproducts are prone to mold and mycotoxin contamination, which can affect animal production, product quality, and safety. Cyclopiazonic acid (CPA), which is mainly biosynthesized from mevalonate, tryptophan, and diacetate units, is a myotoxic secondary metabolite produced by Penicillium and Aspergillus fungi. CPA is widely present as a copollutant with aflatoxins in various crops. Compared with some common mycotoxins such as aflatoxins, fumonisins, ochratoxins, zearalenones, and their metabolites, CPA has not been well investigated. In the United States, a survey showed that 51% of corn and 90% of peanut samples contained CPA, with a maximum level of 2.9 mg/kg. In Europe, CPA was found in Penicillium-contaminated cheeses as high as 4.0 mg/kg. Some studies have shown that CPA can cause irreversible damage to organs such as the liver and spleen in mice. Therefore, the establishment of a rapid and efficient analytical method for CPA is of great significance for the risk assessment of CPA in feeds, the development of standard limits, and the protection of feed product quality and safety. The QuEChERS method, a sample pretreatment method that is fast, simple, cheap, effective, and safe, is widely used in the analysis of pesticide residues in food. In this study, a modified QuEChERS method combined with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to determine CPA levels in feeds. The chromatographic separation and MS detection of CPA as well as the key factors affecting the extraction efficiency of CPA, including the type of extraction solvent, type of inorganic salt, and type and dosage of adsorbent, were optimized in detail. During the optimization of the chromatographic-separation step, the acid and salt concentrations of the mobile phase affected the separation and detection of CPA. During the optimization of the QuEChERS method, the addition of a certain amount of acetic acid improved the extraction efficiency of CPA because of its acidic nature; in addition, GCB and PSA significantly adsorbed CPA from the feed extract. Under optimal conditions, the CPA in the feed sample (1.0 g) was extracted with 2 mL of water and 4 mL of acetonitrile (ACN) containing 0.5% acetic acid. After salting out with 0.4 g of NaCl and 1.6 g of MgSO4, 1 mL of the ACN supernatant was purified by dispersive solid-phase extraction using 150 mg of MgSO4 and 50 mg of C18 and analyzed by UPLC-MS/MS. The sample was separated on a Waters HSS T3 column (100 mm×2.1 mm, 1.8 µm) using 2 mmol/L ammonium acetate aqueous solution with 0.5% formic acid and ACN as the mobile phases and then analyzed by positive electrospray ionization in multiple reaction monitoring mode. CPA exhibited good linearity in the range of 2-200 ng/mL, with a high correlation coefficient (r=0.9995). The limits of detection and quantification of CPA, which were calculated as 3 and 10 times the signal-to-noise ratio, respectively, were 0.6 and 2.0 µg/kg, respectively. The average recoveries in feed samples spiked with 10, 100, and 500 µg/kg CPA ranged from 70.1% to 78.5%, with an intra-day precision of less than 5.8% and an inter-day precision of less than 7.2%, indicating the good accuracy and precision of the proposed method. Finally, the modified QuEChERS-UPLC-MS/MS method was applied to the analysis of CPA in 10 feed samples obtained from Wuhan market. The analysis results indicated that the developed method has good applicability for CPA analysis in feed samples. In summary, an improved QuEChERS method was applied to the extraction and purification of CPA from feeds for the first time; this method provides a suitable analytical method for the risk monitoring, assessment, and standard-limit setting of CPA in feed samples.


Assuntos
Ração Animal , Contaminação de Alimentos , Indóis , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Ração Animal/análise , Cromatografia Líquida de Alta Pressão/métodos , Contaminação de Alimentos/análise , Indóis/análise , Micotoxinas/análise
3.
Foods ; 13(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38790799

RESUMO

A novel co-bonded octyl and pyridine silica (OPS) sorbent was prepared and applied for the solid phase extraction (SPE) of cyclopiazonic acid (CPA, a type of mycotoxin) in feed and agricultural products for the first time. A simple mixed-ligand one-pot reaction strategy was employed for OPS sorbent preparation. Nitrogen adsorption-desorption measurements, elemental analysis (EI), thermal gravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FT-IR) analysis demonstrated the successful immobilization of octyl and quaternary ammonium groups onto the surface of silica gel. The large specific surface area, high-density functional groups, and mixed-mode anion-exchange characteristics of these silica particles made them the ideal material for the efficient extraction of CPA. Additionally, the OPS sorbents displayed excellent batch-to-batch reproducibility, satisfactory reusability, and low cost. The SPE parameters were optimized to explore the ionic and hydrophobic interactions between CPA and the functional groups, and the ultra-high performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (UPLC-MS/MS) parameters were optimized to obtain a desirable extraction efficiency and high sensitivity to CPA. Meanwhile, the OPS sorbent presented a satisfactory extraction selectivity and low matrix effect. Under the optimized conditions, our developed CPA detection method was used to determine CPA level in rice, wheat flour, corn flour, peanut, and feed samples, exhibiting a lower detection limit, better linearity, higher sensitivity, and satisfactory extraction recovery rate than previously reported methods. Therefore, our method can be preferentially used as a method for the detection of CPA in agricultural products and feeds.

4.
One Health ; 18: 100748, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38774301

RESUMO

The industrialization of animal agriculture has undoubtedly contributed to the improvement of human well-being by increasing the efficiency of food animal production. At the same time, it has also drastically impacted the natural environment and human society. The One Health initiative emphasizes the interdependency of the health of ecosystems, animals, and humans. In this paper, we discuss some of the most profound consequences of animal agriculture practices from a One Health perspective. More specifically, we focus on impacts to host-microbe interactions by elaborating on how modern animal agriculture affects zoonotic infections, specifically those of bacterial origin, and the concomitant emergence of antimicrobial resistance (AMR). A key question underlying these deeply interconnected issues is how to better prevent, monitor, and manage infections in animal agriculture. To address this, we outline approaches to mitigate the impacts of agricultural bacterial zoonoses and AMR, including the development of novel treatments as well as non-drug approaches comprising integrated surveillance programs and policy and education regarding agricultural practices and antimicrobial stewardship. Finally, we touch upon additional major environmental and health factors impacted by animal agriculture within the One Health context, including animal welfare, food security, food safety, and climate change. Charting how these issues are interwoven to comprise the complex web of animal agriculture's broad impacts on One Health will allow for the development of concerted, multidisciplinary interventions which are truly necessary to tackle these issues from a One Health perspective.

5.
Toxics ; 12(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38668505

RESUMO

Lead (Pb) and arsenic (As) are commonly occurring heavy metals in the environment and produce detrimental impacts on the central nervous system. Although they have both been indicated to exhibit neurotoxic properties, it is not known if they have joint effects, and their mechanisms of action are likewise unknown. In this study, zebrafish were exposed to different concentrations of Pb (40 µg/L, 4 mg/L), As (32 µg/L, 3.2 mg/L) and their combinations (40 µg/L + 32 µg/L, 4 mg/L + 3.2 mg/L) for 30 days. The histopathological analyses showed significant brain damage characterized by glial scar formation and ventricular enlargement in all exposed groups. In addition, either Pb or As staining inhibited the swimming speed of zebrafish, which was enhanced by their high concentrations in a mixture. To elucidate the underlying mechanisms, we examined changes in acetylcholinesterase (AChE) activity, neurotransmitter (dopamine, 5-hydroxytryptamine) levels, HPI axis-related hormone (cortisol and epinephrine) contents and neurodevelopment-related gene expression in zebrafish brain. The observations suggest that combined exposure to Pb and As can cause abnormalities in swimming behavior and ultimately exacerbate neurotoxicity in zebrafish by interfering with the cholinergic system, dopamine and 5-hydroxytryptamine signaling, HPI axis function as well as neuronal development. This study provides an important theoretical basis for the mixed exposure of heavy metals and their toxicity to aquatic organisms.

6.
Se Pu ; 41(9): 731-741, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37712537

RESUMO

The quality and safety of agricultural products are strongly related to human livelihood. Thus, the government and consumers have recently paid increased attention to the quality and safety of agricultural products. The development of efficient, rapid, and sensitive analytical methods for detecting pesticides, veterinary drugs, heavy metals, mycotoxins, and environmental pollutants in agricultural products is of great significance. Owing to the complexity of many sample matrices and the low concentration of pollutants in a typical sample, appropriate sample pretreatment steps are necessary to enrich pollutants in agricultural products. Solid-phase extraction (SPE) is the most widely used sample pretreatment technology; in this technique, the adsorbent generally determines the selectivity and efficiency of the extraction process. An increasing number of novel materials have been used as SPE adsorbents. The extraction efficiency, extraction selectivity, and analytical throughput of SPE could be greatly improved by combining these novel materials with various extraction modes (e. g., solid-phase microextraction, dispersed SPE, and magnetic SPE (MSPE)) during sample preparation. Because of their large specific surface area and high affinity toward target analytes, nanomaterials are often used as SPE adsorbents, thereby greatly improving the selectivity and sensitivity of the analytical technology. More importantly, these materials have become a priority area of research on preconcentration technologies for trace compounds in agricultural products. This paper summarizes the adsorption characteristics of several new nanomaterials, including magnetic materials, carbon-based materials, metal nanomaterials (MNs), metal oxide nanomaterials (MONs), metal organic frameworks (MOFs), and covalent organic frameworks (COFs). These nanomaterials present numerous advantages, such as large specific surface areas, high adsorption capacities, and tailorable structural designs. MSPE employs magnetic materials as sorbents to afford fast dispersion and efficient recycling when applied to complex sample matrices under an external magnetic field. The use of MSPE can avoid several typical problems associated with SPE such as poor adsorbent packing and high pressure, thereby greatly simplifying the pretreatment process and providing a high flux for sample analysis. Carbon-based materials are powdered or bulk nonmetallic solid materials with carbon as the main component; carbon and nitrogen materials, mesoporous carbon, carbon nanotubes, and graphene are some examples of these materials. These materials provide large specific surface areas, abundant pore structures, good thermal stability, high mechanical strength and adsorption capacity, and controllable morphology. Pure and modified carbon nanomaterials have been successfully used to purify target analytes from agricultural products. Given their unique physical and chemical properties, MNs and MONs have attracted significant interest for use in sample preparation. MNs and MONs with excellent thermal and mechanical stabilities show good resistance to a wide pH range and diverse organic solvents, which is crucial in adsorbent-based extraction methods. The surface of these materials can be easily modified with various ligands to improve their selectivity. MOFs and COFs present many advantages such as large specific surface areas, high porosity, adjustable pore performance, and good thermal stability. Several methods that employ novel adsorbent materials to analyze pollutants in a variety of agricultural products, such as chromatography, spectroscopy, mass spectrometry, and other detection technologies, have been established. This paper also reviews the application of adsorbent materials in the analysis of agricultural product quality and safety, and discusses the future development trends of these sorbents in sample preparation for the safety analysis of agricultural products.

7.
Mikrochim Acta ; 190(10): 380, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37695413

RESUMO

Molecularly imprinted polymers with methylammonium lead halide perovskite quantum dots (MIP@MAPbBr3 PQDs) have been prepared and applied to the determination of benzo(a)pyrene (BaP) for the first time. The photoluminescence (PL) of MIP@MAPbBr3 PQDs was enhanced due to the surface passivation of defects by BaP. PL excitation and emission spectra, X-ray diffraction, Fourier transform infrared, and time-resolved PL studies suggest that the interaction between MIP@MAPbBr3 PQDs and BaP is a dynamic process. After MIP@MAPbBr3 PQDs were incubated with BaP, the benzene ring in the molecular structure of BaP can interact with MIP@MAPbBr3 PQDs through π electrons, which reduces non-radiative recombination of MIP@MAPbBr3 PQDs and lengthens excited state lifetime. The PL intensity of the MIP@MAPbBr3 PQDs-BaP system was monitored at 520 nm with 375 nm excitation. Under optimized conditions, the PL intensity of MIP@MAPbBr3 PQDs is linear with the concentration of BaP in the 10 to 100 ng·mL-1 range, with a detection limit of 1.6 ng·mL-1. The imprinting factor was 3.9, indicating excellent specificity of MIP@MAPbBr3 PQDs for BaP. The MIP@MAPbBr3 PQDs were subsequently applied to the PL analysis of BaP in sunflower seed oil, cured meat, and grilled fish samples, achieving recoveries from 79.3 to 107%, and relative standard deviations below 10%. This molecularly imprinted fluorescence assay improves the selectivity of BaP in complex mixtures and could be extended to other analytes.

8.
Foods ; 12(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37444231

RESUMO

Lotus roots are widely consumed vegetables because of their great taste and abundant nutrients, but their quality varies with the environments and cultivar. This study systematically compared farinose (Elian No. 5) and crisp (Elian No. 6) lotus root cultivars from three geographical origins. Pasting and texture characteristics verified that Elian No. 5 possessed lower hardness and lower ability to withstand shear stress and heating during cooking compared with Elian No. 6. Untargeted metabolite profiling was first performed using ultrahigh-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) combined with a Zeno trap. In total, 188 metabolites were identified based on the matching chemistry database. Multivariate analysis demonstrated that lotus roots from different cultivars and origins could be adequately distinguished. Sixty-one differential metabolites were identified among three Elian No. 5 samples, and 28 were identified among three Elian No. 6 samples. Isoscopoletin, scopoletin, and paprazine were the most differential metabolites between Elian No. 5 and Elian No. 6. These results can inform future research on the discrimination and utilization of lotus roots.

9.
J Chromatogr A ; 1706: 464229, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37506458

RESUMO

In this study, naphthalene-modified magnetic nanoparticles (Fe3O4@Nap) were simply prepared based on specific chelation interaction between phosphate groups and metal ions on Fe3O4 surface. The resultant Fe3O4@Nap were characterized by FTIR, BET, SEM, TEM, NAM, TGA, and VSM techniques. With Fe3O4@Nap as adsorbent, the polycyclic aromatic hydrocarbons (PAHs) were efficiently extracted by magnetic solid-phase extraction (MSPE) from environmental water and fish samples through the π-π interaction between modified naphthalene groups and PAHs, followed by their determination by GC-MS/MS. The key parameters influencing the extraction efficiency were investigated. Under the optimized conditions, the Fe3O4@Nap-based MSPE/GC-MS/MS method proposed in this paper was evaluated and applied for analyzing PAHs in environmental water and fish samples. And the proposed MSPE/GC-MS/MS method exhibited good linearities for water samples (in the range of 0.1-10 ng/mL, R2 >0.9945) and for fish samples (in the range of 1-100 ng/g, R2 > 0.9905). The limits of detection (LODs) for water and fish samples were 0.004-0.031 ng/mL and 0.07-0.28 ng/g, respectively. Additionally, this method exhibited desirable accuracy and precision. The PAH recovery values from water and fish samples ranged from 81.5% to 109.6% with inter- and intra-day relative standard deviations (RSDs) of less than 12.8%. The MSPE/GC-MS/MS method was successfully applied to the analysis of real environmental water and fish samples. Overall, the newly synthesized Fe3O4@Nap exhibited high sensitivity, specificity, reusability, repeatability, and it could efficiently extract PAHs from environmental water and fish samples by MSPE.


Assuntos
Nanopartículas de Magnetita , Nanopartículas de Magnetita/química , Hidrocarbonetos Policíclicos Aromáticos/química , Animais , Água Subterrânea/química , Peixes , Microextração em Fase Sólida
10.
Anal Methods ; 15(18): 2210-2218, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37102616

RESUMO

A simple and sensitive method combining solid-phase extraction (SPE) and high-performance liquid chromatography-ultraviolet detection (HPLC-UV) was developed for the determination of benzo[a]pyrene (BaP) in fish. Loofah sponge (LS) was carbonized and used as an SPE adsorbent. Carbonization decreased the polarity of LS and enhanced its aromaticity. Carbonized loofah sponge (CLS) could capture BaP better through π-π interaction. The carbonization temperature and the SPE conditions were optimized. The linear range of the developed method was within 10-1000 ng g-1 with a satisfactory correlation coefficient (R2) of 0.9999. The limit of detection (LOD) was 2.0 ng g-1, which was below the maximum residue limit (5 µg kg-1) in meat set by the European Union. The method showed good intra-day and inter-day precision with relative standard deviations (RSDs) ranging from 0.4% to 1.7%. Finally, the developed method was applied to the determination of BaP in fish samples. This method is low-cost and environmentally friendly with natural and renewable LS as raw material and it provides an alternative approach for the efficient and simple determination of BaP in aquatic products.


Assuntos
Benzo(a)pireno , Luffa , Animais , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos , Extração em Fase Sólida/métodos
11.
Artigo em Inglês | MEDLINE | ID: mdl-36900939

RESUMO

The aim of this study was to explore the underlying mechanism of adverse effects caused by tebuconazole (TEB) on the reproduction of aquatic organisms In the present study, in order to explore the effects of TEB on reproduction, four-month-old zebrafish were exposed to TEB (0, DMSO, 0.4 mg/L, 0.8 mg/L, and 1.6 mg/L) for 21 days. After exposure, the accumulations of TEB in gonads were observed and the cumulative egg production was evidently decreased. The decline of fertilization rate in F1 embryos was also observed. Then the changes in sperm motility and histomorphology of gonads were discovered, evaluating that TEB had adverse effects on gonadal development. Additionally, we also found the alternations of social behavior, 17ß-estradiol (E2) level, and testosterone (T) level. Furthermore, the expression levels of genes involved in the hypothalamic-pituitary-gonadal (HPG) axis and social behavior were remarkably altered. Taken together, it could be concluded that TEB affected the egg production and fertilization rate by interfering with gonadal development, sex hormone secretion, and social behavior, which were eventually attributed to the disruption of the expressions of genes associated with the HPG axis and social behavior. This study provides a new perspective to understanding the mechanism of TEB-induced reproductive toxicity.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Animais , Masculino , Peixe-Zebra/metabolismo , Motilidade dos Espermatozoides , Gônadas/metabolismo , Reprodução , Comportamento Social , Poluentes Químicos da Água/toxicidade , Disruptores Endócrinos/toxicidade
12.
Anal Chim Acta ; 1236: 340579, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36396234

RESUMO

In this work, a La3+ assisted glutathione-capped gold nanoclusters and carbon dots (GSH-Au NCs/CDs) nanoplatform for sensitive detection of fenthion (FEN) is fabricated. The fluorescence response of GSH-Au NCs significantly increases due to aggregation-induced emission enhancement (AIEE) effect induced by La3+, which is further enhanced with adding FEN due to the coordination between La3+ and FEN. Taking the fluorescence intensity of CDs as the signal background, the ratiometric fluorescence of GSH-Au NCs and CDs has a good linear relationship with the FEN concentration from 0.01 to 1.10 µg mL-1, and detecting FEN exhibits a good sensitivity at a low detection limit of 6.74 ng g-1. The La3+ assisted GSH-Au NCs/CDs nanoplatform demonstrates desirable selectivity and applicability for monitoring trace level of FEN in fruit and vegetable samples. The non-enzymatic strategy by taking advantage of successive AIEE of GSH-Au NCs has a great potential for facile screening organophosphate pesticides in agro-products.


Assuntos
Corantes Fluorescentes , Nanopartículas Metálicas , Corantes Fluorescentes/química , Nanopartículas Metálicas/química , Fention , Lantânio , Ouro/química , Glutationa/química , Íons , Carbono/química
13.
Chemosphere ; 307(Pt 3): 135977, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35948095

RESUMO

Interactions between titanium dioxide nanoparticles (n-TiO2) and pollutants in the aquatic environment may alter the bioavailability of pollutants, and thus altering their toxicity and fate. In order to investigate the bioconcentration of azoxystrobin (AZ) and its mechanism of cardiotoxicity in the presence of n-TiO2, the experiment was divided into control, n-TiO2 (100 µg/L), AZ (40, 200 and 1000 µg/L) and AZ (40, 200, 1000 µg/L) + n-TiO2 groups, and the zebrafish embryos were exposed to the exposure solution until 72 h post-fertilization. Results suggested the presence of n-TiO2 notably reduced the accumulation of AZ in larvae compared with exposure to AZ alone, thereby significantly decreasing AZ-induced cardiotoxicity, including heart rate changes, pericardium edema, venous thrombosis, increased sinus venosus and bulbus arteriosus distance and changes in cardiac-related gene expression. Further studies showed that AZ + n-TiO2 together restrained total-ATPase and Ca2+-ATPase activities, while the activity of Na+K+-ATPase increased at first and then decreased. Furthermore, there were significant changes in the expressions of oxidative phosphorylation and calcium channel-related genes, suggesting mitochondrial dysfunction may be the potential mechanism of cardiotoxicity induced by AZ and n-TiO2. This study supplies a new perspective for the joint action of AZ and environmental coexisting pollutants and provides a basis for ecological risk management of pesticides.


Assuntos
Nanopartículas , Praguicidas , Poluentes Químicos da Água , Adenosina Trifosfatases/metabolismo , Animais , Bioacumulação , Canais de Cálcio/metabolismo , Cardiotoxicidade , Larva/metabolismo , Nanopartículas/toxicidade , Praguicidas/metabolismo , Pirimidinas , Estrobilurinas , Titânio/farmacologia , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo
14.
Food Chem ; 386: 132836, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35381539

RESUMO

Herein, a fluorescence "on-off" system was developed for monitoring carbendazim (CBZ) residues in fruit samples, based on glutathione-gold nanoclusters (GSH-Au NCs) and silver ions (Ag+). First, the fluorescence intensity of GSH-Au NCs was greatly enhanced (turn on) with aggregation-induced emission enhancement (AIEE) effect in the presence of Ag+, then fluorescence quenching occurred (turn off) with adding CBZ by the chelation between CBZ and Ag+. The quenching degree was well linearly dependent on CBZ concentration covering from 0.5 to 20 µM. Moreover, the GSH-Au NCs-Ag+ system exhibited superior selectivity towards CBZ and was sensitive for the determination of CBZ in apple and orange juices with a low detection limit of 0.12 µM. The recoveries of CBZ spiked in fruit samples ranged from 81.0 % to 111.4% with the relative standard deviations less than 6.6%, demonstrating its great potential for monitoring CBZ residues in fruit samples.


Assuntos
Nanopartículas Metálicas , Prata , Benzimidazóis , Carbamatos , Frutas , Glutationa/química , Ouro/química , Íons , Limite de Detecção , Nanopartículas Metálicas/química , Prata/química
15.
J Sep Sci ; 45(6): 1262-1272, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35029014

RESUMO

In this work, a simple and miniaturized solid-phase extraction device was constructed by connecting a commercial nylon needle filter to a syringe, which was applied for extracting 1-hydroxypyrene from a urine sample via hydrophobic and hydrogen bond interactions. The nylon membrane in the needle filter acted as the solid-phase extraction adsorbent, meanwhile, it filtered the particles in the urine sample. To obtain high extraction efficiency, key parameters influencing extraction recovery were investigated. The entire pretreatment process was accomplished within 5 min under the optimal conditions. By coupling high-performance liquid chromatography-ultraviolet, a rapid, low-cost, and convenient nylon needle filter-based method was established for the analysis of 1-hydroxypyrene in a complex urine matrix. Within the linearity range of 0.2-1000 µg/L, the method exhibited a satisfactory correlation coefficient (R = 0.9999). The limit of detection was 0.06 µg/L, and the recoveries from urine sample spiked with three concentrations (5, 20, and 100 µg/L) ranged from 105.8% to 113.1% with the relative standard deviations less than 6.7% (intra-day, n = 6) and 8.9% (inter-day, n = 4). Finally, the proposed method was successfully applied for detecting 1-hydroxypyrene in urine samples from college students, smokers, gas station workers, and chip factory workers. The detected concentration in actual urine samples ranged from 0.46 to 5.26 µg/L. Taken together, this simple and cost-effective nylon needle filter-based solid-phase extraction device showed an excellent application potential for pretreating hydrophobic analytes from aqueous samples.


Assuntos
Nylons , Extração em Fase Sólida , Cromatografia Líquida de Alta Pressão , Humanos , Pirenos
16.
Food Chem ; 374: 131761, 2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-34896946

RESUMO

A rapid, selective, and sensitive method was developed for the detection of carbendazim and thiabendazole in edible vegetable oil. Two benzimidazole analytes were pre-concentrated by magnetic solid phase extraction (MSPE) using flowerlike Ni-NiO composite as sorbents and followed by LC-MS/MS analysis. The flowerlike Ni-NiO composite sorbent displayed a high affinity towards benzimidazole analytes due to the reversible coordination interaction between the Ni(Ⅱ) ion and the electron-donating imidazole group. In comparison to the previous methods, this procedure is less time-consuming and simpler during sample preparation. The parameters affecting the extraction efficiency were optimized in detail. The method was validated according to SANTE/12682/2019. The limits of detection were in the range of 0.001-0.003 mg•kg-1. The recoveries ranged from 89.3% to 110.7% with inter-day and inter-day precision less than 10.9%. The results indicate that flowerlike Ni-NiO composite might be a promising alternative for MSPE of benzimidazole compounds in foods.


Assuntos
Tiabendazol , Verduras , Benzimidazóis/análise , Carbamatos , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Fenômenos Magnéticos , Óleos de Plantas , Extração em Fase Sólida , Espectrometria de Massas em Tandem
17.
Food Res Int ; 150(Pt A): 110745, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34865763

RESUMO

Fermented meat rice (FMR) is a traditional Chinese fermented food with special flavor and abundant microorganisms. Lactobacillus and Staphylococcus species have been found to be excellent strains in FMR during fermentation. However, their roles in FMR flavor formation remain yet to be elucidated. Here, we investigated the correlation between physicochemical properties and volatile flavor components, as well as the microbial community during FMR fermentation. First, we determined pH, total titratable acids (TTA), proteins, total lipids, organic acids, free amino acids (FAAs), and volatile flavor compounds (VFCs). With increasing fermentation time, inoculation with Lactobacillus plantarum C7+ Staphylococcus warneri S6 (LP + SW) accelerated the decrease in pH, increased TTA, and reduced protein and total lipid content of FMR. In addition, LP + SW inoculation resulted in significantly (P < 0.05) higher contents of ß-eudesmol, nerolidol, ethyl caproate, citronellal, lactic acid, and most FAAs (aspartic acid, glutamic acid, alanine, and lysine) in FMR compared to natural fermentation. Second, inoculated fermentation promoted the growth of Lactobacillus plantarum and/or Staphylococcus warneri and inhibited the growth of some potentially pathogenic microorganisms such as Acinetobacter and Enhydrobacter. Lactobacillus and Staphylococcus were found to be highly correlated with the physicochemical properties and VFCs (P < 0.05) of FMR as indicated by redundancy analysis (RDA) and partial least squares (PLS, VIP > 1.0) analysis. Finally, Spearman's correlation (| r | ≥ 0.7, P < 0.05) analysis of SPSS was visualized by the Cytoscape software. The findings suggest that inoculation with L. plantarum C7 and/or S. warneri S6 can significantly improve the flavor quality of FMR.


Assuntos
Lactobacillus plantarum , Oryza , China , Carne , Staphylococcus
18.
Se Pu ; 39(12): 1368-1373, 2021 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-34812010

RESUMO

An improved QuEChERS (quick, easy, cheap, effective, rugged, safe) method, combined with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), was used to determine bongkrekic acid (BA) in tremella and auricularia auricular. BA is a fat-soluble, fatal bacterial toxin produced by the aerobic gram-negative bacteria Burkholderia gladioli pathovar cocovenenans. Tremella and auricularia auricular, which have rich nutritional values, are traditional edible fungi in China that are very popular among Chinese consumers. However, tremella and auricularia auricular are easily contaminated by BA during storage and foaming, and this poses a great threat to food safety and human health. Therefore, establishing a rapid and efficient analysis method for detecting BA in tremella and auricularia auricular is of considerable significance. However, the BA concentration in the actual sample is very low, and the matrices of tremella fuciformis and auricularia auricular are very complex. Thus, it is necessary to employ appropriate sample pretreatment technology to extract and purify BA from tremella and auricularia auricular samples prior to instrumental analysis. In this study, the QuEChERS method, combined with UHPLC-MS/MS, was used to detect BA in tremella and auricularia auricular. The key parameters, such as extraction solvent, extraction method, and adsorbent used for cleanup, were optimized to obtain high extraction efficiency. The content of acetic acid in the extraction solution strongly influenced the extraction efficiency of BA, and acetonitrile with 5%(v/v) acetic acid was determined to be the optimum extraction solvent. After salting out, the acetonitrile extract was purified by dispersive solid phase extraction using 200 mg C18 as a cleanup adsorbent. The sample was then separated on a Waters HSS T3 column (100 mm×2.1 mm, 1.8 µm), using a water solution containing 0.01% (v/v) formic acid and 0.05% (v/v) ammonia and methanol as mobile phases. MS analysis was performed using an electrospray ionization source in the negative and multiple reaction monitoring (MRM) modes. Under the optimized conditions, the matrix effects of UHPLC-MS/MS in tremella and auricularia auricular were -6.3% and -11.5%, respectively; this indicated that the method had a significant purification effect, and the sample matrix did not affect the MS detection of BA. Further study showed that in the concentration range of 1-200 µg/L, the square of the regression coefficient of the linear equation (R2) was greater than 0.999. The limit of detection (LOD) and limit of quantitation (LOQ) were 0.15 µg/kg and 0.5 µg/kg, respectively. The average recoveries in samples spiked with 0.5, 10, and 50 µg/kg BA in tremella ranged from 92.4% to 102.6%, and the intra-day and inter-day relative standard deviations (RSDs) were 4.3%-4.9% and 3.2%-3.5%, respectively. For auricularia auricular, the average recoveries ranged from 89.6% to 102.3%, and the intra-day and inter-day RSDs were 2.4%-9.5% and 3.6%-4.1%, respectively. These results indicate that the proposed method has satisfactory sensitivity, accuracy, and precision. Finally, the method showed good performance when applied to the analysis of real samples. Compared with other reported methods, the LOD and LOQ of our proposed method were lower, with satisfactory recovery and precision. Taken together, this study provides an effective detection technology for the monitoring and risk control of BA in tremella and auricularia auricular.


Assuntos
Auricularia , Espectrometria de Massas em Tandem , Basidiomycota , Ácido Bongcréquico , Cromatografia Líquida de Alta Pressão , Humanos
19.
J Phys Chem Lett ; 12(31): 7497-7503, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34342458

RESUMO

Mn2+-doped amino lead halide molecular clusters (MCs) are synthesized using amine (e.g., n-octylamine, or butylamine) as passivating ligand and MnX2 (X = Cl or Br) as the Mn2+ doping source at room temperature. Their optical properties are investigated with UV-visible absorption, photoluminescence (PL), and PL excitation spectroscopy. The Mn2+ precursor plays a vital role in the synthesis of Mn2+-doped MCs. MnCl2 seems to facilitate the incorporation of Mn. The MnCl2 doping causes electronic absorption blue shift and leads to a spin-forbidden 4T1 → 6A1 Mn d-electron emission. With the help of time-resolved PL, Fourier transform infrared, and electron paramagnetic resonance results, a model is proposed to explain the formation mechanism. We suggest that Mn2+ doping replaces Pb2+ is assisted by Cl- ions that replace Br- ions. This study demonstrates the possibility of doping MCs and has important implications in gaining new fundamental insight into the growth mechanisms of perovskite nanostructures.

20.
J Sep Sci ; 44(7): 1510-1520, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33492709

RESUMO

Dispersive liquid-liquid microextraction has garnered increasing attention in sample preparation due to its rapid and efficient extraction process. In this study, a new terpineol-based hydrophobic deep eutectic solvent was firstly synthesized by mixing α-terpineol with 1-octanoic acid, and then applied to analysis of phenols from water samples by dispersive liquid-liquid microextraction combined with high-performance liquid chromatography and diode array detection. Infrared spectroscopy indicated that hydrogen bonding was responsible for the formation of deep eutectic solvent between α-terpineol and 1-octanoic acid. After optimization of several parameters, such as the type and volume of deep eutectic solvent and the disperser, pH and ionic strength of sample solution, the developed method exhibited excellent extraction performance to the phenols with the enrichment factors from 27 to 32. Good linearity was acquired ranging from 5 to 5000 µg/L, and detection of limits of the proposed method for the phenols ranged from 0.15 to 0.38 µg/L. The recoveries measured by spiked samples at three concentration levels ranged from 81.6 to 99.3%, and precision was found with intra- and inter-day relative standard deviations less than 8.7 and 9.2%, respectively. Finally, the proposed method was successfully applied to the determination of the phenols in environmental water samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA