Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38908910

RESUMO

Pyrroloquinoline quinone (PQQ) is a redox cofactor with numerous important physiological functions, and the type VI secretion system (T6SS) is commonly found in Gram-negative bacteria and plays important roles in physiological metabolism of the bacteria. In this study, we found that the deletion of pqqF enhanced the secretion of Hcp-1 in Serratia marcesens FS14 in M9 medium. Transcriptional analysis showed that the deletion of pqqF almost had no effect on the expression of T6SS-1. Further study revealed that the increased secretion of Hcp-1 was altered by the pH changes of the culture medium through the reaction catalyzed by the glucose dehydrogenases in FS14. Finally, we demonstrated that decreased pH of culture medium has similar inhibition effects as PQQ induced on the secretion of T6SS-1. This regulation mode on T6SS by pH in FS14 is different from previously reported in other bacteria. Therefore, our results suggest a novel pH regulation mode of T6SS in S. marcesens FS14, and would broaden our knowledge on the regulation of T6SS secretion.


Assuntos
Proteínas de Bactérias , Meios de Cultura , Cofator PQQ , Serratia marcescens , Sistemas de Secreção Tipo VI , Concentração de Íons de Hidrogênio , Serratia marcescens/genética , Serratia marcescens/metabolismo , Cofator PQQ/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Sistemas de Secreção Tipo VI/genética , Meios de Cultura/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica
2.
Antonie Van Leeuwenhoek ; 116(11): 1197-1208, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37728826

RESUMO

Regulation of prodigiosin biosynthesis is received wide attention due to the antimicrobial, immunosuppressive and anticancer activities of prodigiosin. Here, we constructed a transposon mutant library in S. marcescens FS14 to identify genes involved in the regulation of prodigiosin biosynthesis. 62 strains with apparently different colors were obtained. Identification of the transposon insertion sites revealed that they are classified into three groups: the coding region of cyaA and two component system eepS/R and the promoter region of rpoH. Since the effect of cyaA and eepS/R genes on prodigiosin was extensively investigated in Serratia marcescens, we chose the mutant of rpoH for further investigation. Further deletion mutation of rpoH gene showed no effect on prodigiosin production suggesting that the effect on prodigiosin production caused by transposon insertion is not due to the deletion of RpoH. We further demonstrated that multicopy expression of RpoH reduced prodigiosin biosynthesis indicating that transposon insertion caused RpoH enhanced expression. Previous results indicate that RpoS is the sigma factor for transcription of pig gene cluster in FS14, to test whether the enhanced expression of RpoH prevents prodigiosin by competing with RpoS, we found that multicopy expression of RpoS could alleviate the prodigiosin production inhibition by enhanced RpoH. We proposed that multicopy expressed RpoH competes with RpoS for core RNA polymerase (RNAP) resulting in decreased transcription of pig gene cluster and prodigiosin production reduction. We also demonstrated that RpoH is not directly involved in prodigiosin biosynthesis. Our results suggest that manipulating the transcription level of sigma factors may be applied to regulate the production of secondary metabolites.


Assuntos
Prodigiosina , Serratia marcescens , Animais , Suínos , Serratia marcescens/metabolismo , Prodigiosina/metabolismo , Fator sigma/genética , Fator sigma/metabolismo , Sequência de Bases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA