Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nanomedicine ; 62: 102773, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38960364

RESUMO

To address the adverse side effects associated with systemic high-dose methylprednisolone (MP) therapy for acute spinal cord injury (SCI), we have developed a N-2-hydroxypropyl methacrylamide copolymer-based MP prodrug nanomedicine (Nano-MP). Intravenous Nano-MP selectively targeted to the inflamed SCI lesion and significantly improved neuroprotection and functional recovery after acute SCI. In the present study, we comprehensively assessed the potential adverse side effects associated with the treatment in the SCI rat models, including reduced body weight and food intake, impaired glucose metabolism, and reduced musculoskeletal mass and integrity. In contrast to free MP treatment, intravenous Nano-MP after acute SCI not only offered superior neuroprotection and functional recovery but also significantly mitigated or even eliminated the aforementioned adverse side effects. The superior safety features of Nano-MP observed in this study further confirmed the clinical translational potential of Nano-MP as a highly promising drug candidate for better clinical management of patients with acute SCI.

2.
Nanomedicine ; 60: 102761, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38871068

RESUMO

To date, no therapy has been proven to be efficacious in fully restoring neurological functions after spinal cord injury (SCI). Systemic high-dose methylprednisolone (MP) improves neurological recovery after acute SCI in both animal and human. MP therapy remains controversial due to its modest effect on functional recovery and significant adverse effects. To overcome the limitation of MP therapy, we have developed a N-(2-hydroxypropyl) methacrylamide copolymer-based MP prodrug nanomedicine (Nano-MP) that can selectively deliver MP to the SCI lesion when administered systemically in a rat model of acute SCI. Our in vivo data reveal that Nano-MP is significantly more effective than free MP in attenuating secondary injuries and neuronal apoptosis. Nano-MP is superior to free MP in improving functional recovery after acute SCI in rats. These data support Nano-MP as a promising neurotherapeutic candidate, which may provide potent neuroprotection and accelerate functional recovery with improved safety for patients with acute SCI.

3.
JBMR Plus ; 7(12): e10825, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38130761

RESUMO

Rapid and extensive sublesional bone loss after spinal cord injury (SCI) is a difficult medical problem that has been refractory to available interventions except the antiresorptive agent denosumab (DMAB). While DMAB has shown some efficacy in inhibiting bone loss, its concurrent inhibition of bone formation limits its use. Sialic acid-binding immunoglobulin-like lectin (Siglec)-15 is expressed on the cell surface of mature osteoclasts. Anti-Siglec-15 antibody (Ab) has been shown to inhibit osteoclast maturation and bone resorption while maintaining osteoblast activity, which is distinct from current antiresorptive agents that inhibit the activity of both osteoclasts and osteoblasts. The goal of the present study is to test a Siglec-15 Ab (NP159) as a new treatment option to prevent bone loss in an acute SCI model. To this end, 4-month-old male Wistar rats underwent complete spinal cord transection and were treated with either vehicle or NP159 at 20 mg/kg once every 2 weeks for 8 weeks. SCI results in significant decreases in bone mineral density (BMD, -18.7%), trabecular bone volume (-43.1%), trabecular connectivity (-59.7%), and bone stiffness (-76.3%) at the distal femur. Treatment with NP159 almost completely prevents the aforementioned deterioration of bone after SCI. Blood and histomorphometric analyses revealed that NP159 is able to greatly inhibit bone resorption while maintaining bone formation after acute SCI. In ex vivo cultures of bone marrow cells, NP159 reduces osteoclastogenesis while increasing osteoblastogenesis. In summary, treatment with NP159 almost fully prevents sublesional loss of BMD and metaphysis trabecular bone volume and preserves bone strength in a rat model of acute SCI. Because of its unique ability to reduce osteoclastogenesis and bone resorption while promoting osteoblastogenesis to maintain bone formation, Siglec-15 Ab may hold greater promise as a therapeutic agent, compared with the exclusively antiresorptive or anabolic agents that are currently used, in mitigating the striking bone loss that occurs after SCI or other conditions associated with severe immobilization. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

4.
Ying Yong Sheng Tai Xue Bao ; 33(10): 2611-2618, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36384594

RESUMO

As an important parameter regulating soil carbon mineralization, microbial carbon use efficiency (CUE) is essential for the understanding of carbon (C) cycle in terrestrial ecosystems. Three nitrogen supplemental levels, including control (0 kg N·hm-2·a-1), low nitrogen (40 kg N·hm-2·a-1), and high nitrogen (80 kg N·hm-2·a-1), were set up in a Castanopsis fabri forest in the Daiyun Mountain. The basic physical and chemical properties, organic carbon fractions, microbial biomass, and enzyme activities of the soil surface layer (0-10 cm) were measured. To examine the effects of increasing N deposition on microbial CUE and its influencing factors, soil microbial CUE was measured by the 18O-labelled-water approach. The results showed that short-term N addition significantly reduced microbial respiration rate and the activities of C and N acquisition enzymes, but significantly increased soil microbial CUE. ß-N-acetyl amino acid glucosidase (NAG)/microbial biomass carbon (MBC), microbial respiration rate, ß-glucosidase (BG)/MBC, cellulose hydrolase (CBH)/MBC, and soil organic carbon content were the main factors affecting CUE. Moreover, CUE significantly and negatively correlated with NAG/MBC, microbial respiration rate, BG/MBC, and CBH/MBC, but significantly and positively correlated with soil organic carbon. In summary, short-term N addition reduced the cost of soil microbial acquisition of C and N and microbial respiration, and thus increased soil microbial CUE, which would increase soil carbon sequestration potential of the C. fabri forest.


Assuntos
Carbono , Solo , Solo/química , Nitrogênio/análise , Microbiologia do Solo , Ecossistema , Florestas
5.
Bone ; 144: 115825, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33348128

RESUMO

Spinal cord injury (SCI) results in marked atrophy of sublesional skeletal muscle and substantial loss of bone. In this study, the effects of prolonged electrical stimulation (ES) and/or testosterone enanthate (TE) on muscle mass and bone formation in a rat model of SCI were tested. Compared to sham-transected animals, a significant reduction of the mass of soleus, plantaris and extensor digitorum longus (EDL) muscles was observed in animals 6 weeks post-SCI. Notably, ES or ES + TE resulted in the increased mass of the EDL muscles. ES or ES + TE significantly decreased mRNA levels of muscle atrophy markers (e.g., MAFbx and MurF1) in the EDL. Significant decreases in bone mineral density (BMD) (-27%) and trabecular bone volume (-49.3%) at the distal femur were observed in animals 6 weeks post injury. TE, ES and ES + TE treatment significantly increased BMD by +6.4%, +5.4%, +8.5% and bone volume by +22.2%, and +56.2% and+ 60.2%, respectively. Notably, ES alone or ES + TE resulted in almost complete restoration of cortical stiffness estimated by finite element analysis in SCI animals. Osteoblastogenesis was evaluated by colony-forming unit-fibroblastic (CFU-F) staining using bone marrow mesenchymal stem cells obtained from the femur. SCI decreased the CFU-F+ cells by -56.8% compared to sham animals. TE or ES + TE treatment after SCI increased osteoblastogenesis by +74.6% and +67.2%, respectively. An osteoclastogenesis assay revealed significantly increased TRAP+ multinucleated cells (+34.8%) in SCI animals compared to sham animals. TE, ES and TE + ES treatment following SCI markedly decreased TRAP+ cells by -51.3%, -40.3% and -46.9%, respectively. Each intervention greatly reduced the ratio of RANKL to OPG mRNA of sublesional long bone. Collectively, our findings demonstrate that after neurologically complete paralysis, dynamic muscle resistance exercise by ES reduced muscle atrophy, downregulated genes involved in muscle wasting, and restored mechanical loading to sublesional bone to a degree that allowed for the preservation of bone by inhibition of bone resorption and/or by facilitating bone formation.


Assuntos
Traumatismos da Medula Espinal , Animais , Densidade Óssea , Osso e Ossos , Estimulação Elétrica , Membro Posterior , Músculo Esquelético , Ratos , Traumatismos da Medula Espinal/terapia
6.
Neurotrauma Rep ; 2(1): 592-602, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35018361

RESUMO

The administration of high-dose methylprednisolone (MP) for 24-48 h after traumatic spinal cord injury (SCI) has been shown to improve functional recovery. The known adverse effects of MP on skeletal muscle and the immune system, though, have raised clinically relevant safety concerns. However, the effect of MP administration on SCI-induced bone loss has not been evaluated to date. This study examined the adverse effects of high-dose MP administration on skeletal bone after acute SCI in rodents. Male rats underwent spinal cord transection at T3-T4, which was followed by an intravenous injection of MP and subsequent infusion of MP for 24 h. At 2 days, animals were euthanized and hindlimb bone samples were collected. MP significantly reduced bone mineral density (-6.7%) and induced deterioration of bone microstructure (trabecular bone volume/tissue volume, -18.4%; trabecular number, -19.4%) in the distal femur of SCI rats. MP significantly increased expression in the hindlimb bones of osteoclastic genes receptor activator of nuclear factor-κB ligand (RANKL; +402%), triiodothyronine receptor auxiliary protein (+32%), calcitonin receptor (+41%), and reduced osteoprotegerin/RANKL ratio (-72%) compared to those of SCI-vehicle animals. Collectively, 1 day of high-dose MP at a dose comparable to the dosing regimen prescribed to patients who qualify to receive this treatment approach with acute SCI increased loss of bone mass and integrity below the level of lesion than that of animals that had SCI alone, and was associated with further elevation in the expression of genes involved in pathways associated with osteoclastic bone resorption than that observed in SCI animals.

7.
Sci Total Environ ; 711: 134828, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31812386

RESUMO

Advantages for biochars used in soil improvement have been proposed to their nutrients release and sorption characteristics which strongly depend on their production conditions. N2-flow and air-limited pyrolysis are two different widely-applied oxygen-limited pyrolysis methods for producing biochars, however, their different effects on nutrients release and sorption characteristics of biochars remains unknown. In this study, bamboo derived biochars pyrolyzed in N2-flow (BC-N2) and air-limited environments (BC-Air) at the temperature of 150~750 °C were used to compare the release and sorption of nitrogen and phosphorous nutrients. The results showed that release of nitrogen and phosphorous in BC-Air were always greater than those in BC-N2, the maximum nitrogen and phosphorous release of BC-Air (0.65 mg/g at 750 °C) is about 7.7 times of that of BC-N2 (0.084 mg/g at 450 °C). Both BC-N2 and BC-Air had no/little sorption of phosphate. Meanwhile, the sorption capacity of ammonium nitrogen on BC-Air (1.83 ~ 4.67 mg/g) was always greater than that on BC-N2 (0.23 ~ 1.34 mg/g) at the pyrolysis temperature of 300 ~ 750 °C. Phosphorous-containing minerals in ash was an enhancing factor for the release of phosphorous and sorption of ammonium nitrogen on BC-Air. Furthermore, with increasing pyrolysis temperature, the release amount of phosphorous from BC-Air and the sorption capacity of ammonium nitrogen on BC-Air increased. The results show that high pyrolysis temperature combined with air-limited environment produced biochars are optimal for nutrients enhancement and retention.


Assuntos
Carvão Vegetal , Adsorção , Nitrogênio , Fósforo , Pirólise
8.
Spinal Cord ; 58(3): 309-317, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31664187

RESUMO

STUDY DESIGN: Animal study. OBJECTIVE: This study examined how soon after spinal cord injury (SCI) bone loss occurs, and investigated the underlying molecular mechanism. METHODS: Eight-week-old male Wistar rats underwent complete transection of the thoracic spinal cord at T3-4 or sham operation (n = 10-12 per group). Blood, hindlimb bone samples, and bone marrows were collected at 2 and 7 days after SCI. RESULTS: The neurologically motor-complete SCI causes loss of bone mass and deterioration of trabecular bone microstructure as early as 2 days after injury; these skeletal defects become more evident at 7 days. These changes are associated with a dramatic increase in levels of bone resorption maker CTX in blood. Alternations of gene expression in hindlimb bone tissues and bone marrow cells at the first week after SCI were examined. Gene expressions responsible for both bone resorption and formation are increased at 2 days post-SCI, and the associated bone loss and bone deterioration are likely the result of higher levels of osteoclastic resorption over osteoblastic formation, as may be extrapolated from findings at molecular levels. CONCLUSIONS: Rapid bone loss occurs as early as 2 days after motor-complete SCI and interventions for inhibiting bone resorption and prompting bone formation should start as soon as possible after the injury to prevent bone loss.


Assuntos
Reabsorção Óssea/etiologia , Traumatismos da Medula Espinal/complicações , Animais , Modelos Animais de Doenças , Masculino , Ratos , Ratos Wistar , Fatores de Tempo
9.
Environ Sci Pollut Res Int ; 27(5): 5398-5407, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31848955

RESUMO

Nitrogen (N) cycle in forest soils is altered by water, salt, or acid solutions, and its internal transfers to and from each existing inorganic pools are not known comprehensively. To evaluate the soluble and exchangeable N pools, bulk soil (B soil), water-extracted soil (W soil), and the 0.5 mol L-1 K2SO4-treated soil (K soil) were incubated for up to 48 days to comprehend the dynamics of inorganic (NH4+ and NO3-) and soluble organic N (SON) in water-soluble, exchangeable, 2.5 mol L-1 H2SO4 (labile pool I, LPI) and 13 mol L-1 H2SO4 (labile pool II, LPII) pools. To test the N deposition effects, additional NH4NO3 solution was added to B, W, and K soils at amount of 40 mg N kg-1 soil. The results showed that though there was more NO3- removed when W soil was prepared, the similar net nitrification rate in W soil to B soil and more than 20 mg N kg-1 water-soluble NO3- were observed in W soil, which indicated that the loss of NO3- would be enhanced. In contrast, there was more water-soluble and exchangeable NH4+ for K soil compared with B soil. The different dynamic of NO3- between W and K soil suggested that nitrifiers might dominate in the soil matrix rather than the soil solution. After incubation, each N form in the LPI decreased, which can be attributed to the allocation of remaining N into the recalcitrant pool, except the increase of NH4+ for B soil and NO3- for K soil, and NO3- in LPII for B soil. Compared with control, N addition increased mineralization of exchangeable SON to promote nitrification regardless of soils, but weakened the immobilization of NO3-. In addition, N in LPI and LPII pools have increased, which might be related to decomposition of recalcitrant organic matter induced by N addition to transform when the water-soluble and exchangeable N was removed. Therefore, the changes of soluble and exchangeable nitrogen pools impact the N cycling. Our findings can give some explanation for whole soil N transformation responses to N deposition.


Assuntos
Nitrogênio , Solo , Florestas , Nitrificação , Nitrogênio/análise , Nitrogênio/química , Solo/química , Microbiologia do Solo
10.
Calcif Tissue Int ; 103(4): 443-454, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29931461

RESUMO

To date, no efficacious therapy exists that will prevent or treat the severe osteoporosis in individuals with neurologically motor-complete spinal cord injury (SCI). Recent preclinical studies have demonstrated that sclerostin antibody (Scl-Ab) can prevent sublesional bone loss after acute SCI in rats. However, it remains unknown whether sclerostin inhibition reverses substantial bone loss in the vast majority of the SCI population who have been injured for several years. This preclinical study tested the efficacy of Scl-Ab to reverse the bone loss that has occurred in a rodent model after chronic motor-complete SCI. Male Wistar rats underwent either complete spinal cord transection or only laminectomy. Twelve weeks after SCI, the rats were treated with Scl-Ab at 25 mg/kg/week or vehicle for 8 weeks. In the SCI group that did not receive Scl-Ab, 20 weeks of SCI resulted in a significant reduction of bone mineral density (BMD) and estimated bone strength, and deterioration of bone structure at the distal femoral metaphysis. Treatment with Scl-Ab largely restored BMD, bone structure, and bone mechanical strength. Histomorphometric analysis showed that Scl-Ab increased bone formation in animals with chronic SCI. In ex vivo cultures of bone marrow cells, Scl-Ab inhibited osteoclastogenesis, and promoted osteoblastogenesis accompanied by increased Tcf7, ENC1, and the OPG/RANKL ratio expression, and decreased SOST expression. Our findings demonstrate for the first time that Scl-Ab reverses the sublesional bone loss when therapy is begun after relatively prolonged spinal cord transection. The study suggests that, in addition to being a treatment option to prevent bone loss after acute SCI, sclerostin antagonism may be a valid clinical approach to reverse the severe bone loss that invariably occurs in patients with chronic SCI.


Assuntos
Densidade Óssea/efeitos dos fármacos , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Reabsorção Óssea/etiologia , Traumatismos da Medula Espinal/complicações , Animais , Anticorpos/farmacologia , Doença Crônica , Marcadores Genéticos , Masculino , Osteogênese/efeitos dos fármacos , Ratos , Ratos Wistar
11.
J Biol Chem ; 292(26): 11021-11033, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28465350

RESUMO

Muscle and bone are closely associated in both anatomy and function, but the mechanisms that coordinate their synergistic action remain poorly defined. Myostatin, a myokine secreted by muscles, has been shown to inhibit muscle growth, and the disruption of the myostatin gene has been reported to cause muscle hypertrophy and increase bone mass. Extracellular vesicle-exosomes that carry microRNA (miRNA), mRNA, and proteins are known to perform an important role in cell-cell communication. We hypothesized that myostatin may play a crucial role in muscle-bone interactions and may promote direct effects on osteocytes and on osteocyte-derived exosomal miRNAs, thereby indirectly influencing the function of other bone cells. We report herein that myostatin promotes expression of several bone regulators such as sclerostin (SOST), DKK1, and RANKL in cultured osteocytic (Ocy454) cells, concomitant with the suppression of miR-218 in both parent Ocy454 cells and derived exosomes. Exosomes produced by Ocy454 cells that had been pretreated with myostatin could be taken up by osteoblastic MC3T3 cells, resulting in a marked reduction of Runx2, a key regulator of osteoblastic differentiation, and in decreased osteoblastic differentiation via the down-regulation of the Wnt signaling pathway. Importantly, the inhibitory effect of myostatin-modified osteocytic exosomes on osteoblast differentiation is completely reversed by expression of exogenous miR-218, through a mechanism involving miR-218-mediated inhibition of SOST. Together, our findings indicate that myostatin directly influences osteocyte function and thereby inhibits osteoblastic differentiation, at least in part, through the suppression of osteocyte-derived exosomal miR-218, suggesting a novel mechanism in muscle-bone communication.


Assuntos
Diferenciação Celular , Exossomos/metabolismo , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Miostatina/metabolismo , Osteócitos/metabolismo , Via de Sinalização Wnt/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Linhagem Celular , Exossomos/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , MicroRNAs/genética , Miostatina/genética , Ligante RANK/genética , Ligante RANK/metabolismo
13.
J Neurotrauma ; 33(12): 1128-35, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-26529111

RESUMO

Myostatin (MST) is a potent regulator of muscle growth and size. Spinal cord injury (SCI) results in marked atrophy of muscle below the level of injury. Currently, there is no effective pharmaceutical treatment available to prevent sublesional muscle atrophy post-SCI. To determine whether inhibition of MST with a soluble activin IIB receptor (RAP-031) prevents sublesional SCI-induced muscle atrophy, mice were randomly assigned to the following groups: Sham-SCI; SCI+Vehicle group (SCI-VEH); and SCI+RAP-031 (SCI-RAP-031). SCI was induced by complete transection at thoracic level 10. Animals were euthanized at 56 days post-surgery. RAP-031 reduced, but did not prevent, body weight loss post-SCI. RAP-031 increased total lean tissue mass compared to SCI-VEH (14.8%). RAP-031 increased forelimb muscle mass post-SCI by 38% and 19% for biceps and triceps, respectively (p < 0.001). There were no differences in hindlimb muscle weights between the RAP-031 and SCI-VEH groups. In the gastrocnemius, messenger RNA (mRNA) expression was elevated for interleukin (IL)-6 (8-fold), IL-1ß (3-fold), and tumor necrosis factor alpha (8-fold) in the SCI-VEH, compared to the Sham group. Muscle RING finger protein 1 mRNA was 2-fold greater in the RAP-031 group, compared to Sham-SCI. RAP-031 did not influence cytokine expression. Bone mineral density of the distal femur and proximal tibia were decreased post-SCI (-26% and -28%, respectively) and were not altered by RAP-031. In conclusion, MST inhibition increased supralesional muscle mass, but did not prevent sublesional muscle or bone loss, or the inflammation in paralyzed muscle.


Assuntos
Receptores de Activinas Tipo II/farmacologia , Densidade Óssea/efeitos dos fármacos , Músculo Esquelético , Atrofia Muscular/prevenção & controle , Miostatina/efeitos dos fármacos , Traumatismos da Medula Espinal/complicações , Receptores de Activinas Tipo II/administração & dosagem , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/etiologia , Distribuição Aleatória
14.
J Bone Miner Res ; 30(11): 1994-2004, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25974843

RESUMO

Unloading, neural lesions, and hormonal disorders after acute motor-complete spinal cord injury (SCI) cause one of the most severe forms of bone loss, a condition that has been refractory to available interventions tested to date. Thus, these features related to acute SCI provide a unique opportunity to study complex bone problems, potential efficacious interventions, and mechanisms of action that are associated with these dramatic pathological changes. This study was designed to explore the therapeutic potential of sclerostin antibody (Scl-Ab) in a rat model of bone loss after motor-complete SCI, and to investigate mechanisms underlying bone loss and Scl-Ab action. SCI rats were administered Scl-Ab (25 mg/kg/week) or vehicle beginning 7 days after injury then weekly for 7 weeks. SCI resulted in significant decreases in bone mineral density (-25%) and trabecular bone volume (-67%) at the distal femur; Scl-Ab completely prevented these deteriorations of bone in SCI rats, concurrent with markedly increased bone formation. Scanning electron microscopy revealed that SCI reduced numbers of osteocytes and dendrites concomitant with a morphology change from a spindle to round shape; Scl-Ab corrected these abnormalities in osteocytes. In ex vivo cultures of bone marrow cells, Scl-Ab inhibited osteoclastogenesis, and promoted osteoblastogenesis accompanied by increases in mRNA levels of LRP5, osteoprotegerin (OPG), and the OPG/RANKL ratio, and a decrease in DKK1 mRNA. Our findings provide the first evidence that robust bone loss after acute motor-complete SCI can be blocked by Scl-Ab, at least in part, through the preservation of osteocyte morphology and structure and related bone remodeling. Our findings support the inhibition of sclerostin as a promising approach to mitigate the striking bone loss that ensues after acute motor-complete SCI, and perhaps other conditions associated with disuse osteoporosis as a consequence of neurological disorders.


Assuntos
Anticorpos/farmacologia , Proteínas Morfogenéticas Ósseas/imunologia , Fêmur/patologia , Marcadores Genéticos/imunologia , Osteócitos/patologia , Traumatismos da Medula Espinal/patologia , Animais , Contagem de Células , Fêmur/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/patologia , Osteoclastos/patologia , Osteócitos/efeitos dos fármacos , Osteócitos/metabolismo , Osteogênese/efeitos dos fármacos , Ratos Wistar , Traumatismos da Medula Espinal/metabolismo
15.
Ying Yong Sheng Tai Xue Bao ; 26(9): 2646-54, 2015 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-26785545

RESUMO

The objective of this study was to investigate the influence of L-methionine on nitrification and nitrous oxide emission in a red soil under laboratory incubation experiments. A subtropical broad-leaved forest soil sample was collected from Wanmulin natural reserve in Fujian Province, Southeast China. Five treatments were carried out with three replications, i. e., control (CK), L- methionine addition (M), L-methionine and NH(4+)-N addition (MA), L-methionine and NO(2-)-N addition (MN), L-methionine and glucose addition (MC). The soil moisture was maintained at 60% WHC or 90% WHC. The results indicated that the soil NH(4+)-N content in the M treatment significantly increased by 0.8%-61.3%, while the soil NO(3-)-N content reduced by 13.2%-40.7% compared with CK. Under 60% WHC condition, soil NO(2-)-N content in the MC treatment was higher than in the M treatment, soil NO(3-)-N content in the MA and MN treatments were greater than that in the M treatment, and greater in the MN treatment than in the MA treatment. The soil NO(3-)-N content was lowest in the M treatment after incubation. These results suggested that L-methionine could inhibit nitrosation process of autotrophic nitrification. To some extent, carbon addition as glucose with L-methionine decreased the NH(4+)-N content, inhibited the autotrophic nitrification and their effects were dependent on water level. Under 90% WHC condition, carbon addition improved denitrification more obviously, but the decrease of NO(3-)-N content was not sufficient to prove the inhibition of hetero-nitrification due to carbon addition in the presence of L-methionine. The nitrous oxide emission from soil was increased by L-methionine addition. Compared with 60% WHC condition, the nitrous oxide emission was higher under 90% WHC condition, and the promotion of L-methionine addition on N2O was greater when glucose added.


Assuntos
Florestas , Metionina/análise , Nitrificação , Óxido Nitroso/análise , Solo/química , China , Desnitrificação , Água
16.
J Spinal Cord Med ; 36(6): 616-22, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24090150

RESUMO

BACKGROUND: Spinal cord injury (SCI) causes severe bone loss. At present, there is no practical treatment to delay or prevent bone loss in individuals with motor-complete SCI. Hypogonadism is common in men after SCI and may exacerbate bone loss. The anabolic steroid nandrolone reduces bone loss due to microgravity or nerve transection. OBJECTIVE: To determine whether nandrolone reduced bone loss after SCI and, if so, to explore the mechanisms of nandrolone action. METHODS: Male rats with complete transection of the spinal cord were administered nandrolone combined with a physiological replacement dose of testosterone, or vehicle, beginning on day 29 after SCI and continued for 28 days. RESULTS: SCI reduced distal femoral and proximal tibial bone mineral density (BMD) by 25 and 16%, respectively, at 56 days. This bone loss was attenuated by nandrolone. In ex vivo osteoclasts cultures, SCI increased mRNA levels for tartrate-resistant acid phosphatase (TRAP) and calcitonin receptor; nandrolone-normalized expression levels of these transcripts. In ex vivo osteoblast cultures, SCI increased receptor activator of NF-kB ligand (RANKL) mRNA levels but did not alter osteoprotegerin (OPG) mRNA expression; nandrolone-increased expression of OPG and OPG/RANKL ratio. SCI reduced mRNA levels of Wnt signaling-related genes Wnt3a, low-density lipoprotein receptor-related protein 5 (LRP5), Fzd5, Tcf7, and ectodermal-neural cortex 1 (ENC1) in osteoblasts, whereas nandrolone increased expression of each of these genes. CONCLUSIONS: The results demonstrate that nandrolone reduces bone loss after SCI. A potential mechanism is suggested by our findings wherein nandrolone modulates genes for differentiation and activity of osteoclasts and osteoblasts, at least in part, through the activation of Wnt signaling.


Assuntos
Anabolizantes/farmacologia , Reabsorção Óssea/prevenção & controle , Nandrolona/farmacologia , Traumatismos da Medula Espinal/complicações , Via de Sinalização Wnt/fisiologia , Animais , Reabsorção Óssea/etiologia , Reabsorção Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Traumatismos da Medula Espinal/metabolismo
17.
J Biol Chem ; 288(19): 13511-21, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23530032

RESUMO

BACKGROUND: Mechanisms by which muscle regulates bone are poorly understood. RESULTS: Electrically stimulated muscle contraction reversed elevations in bone resorption and increased Wnt signaling in bone-derived cells after spinal cord transection. CONCLUSION: Muscle contraction reduced resorption of unloaded bone independently of the CNS, through mechanical effects and, potentially, nonmechanical signals (e.g. myokines). SIGNIFICANCE: The study provides new insights regarding muscle-bone interactions. Muscle and bone work as a functional unit. Cellular and molecular mechanisms underlying effects of muscle activity on bone mass are largely unknown. Spinal cord injury (SCI) causes muscle paralysis and extensive sublesional bone loss and disrupts neural connections between the central nervous system (CNS) and bone. Muscle contraction elicited by electrical stimulation (ES) of nerves partially protects against SCI-related bone loss. Thus, application of ES after SCI provides an opportunity to study the effects of muscle activity on bone and roles of the CNS in this interaction, as well as the underlying mechanisms. Using a rat model of SCI, the effects on bone of ES-induced muscle contraction were characterized. The SCI-mediated increase in serum C-terminal telopeptide of type I collagen (CTX) was completely reversed by ES. In ex vivo bone marrow cell cultures, SCI increased the number of osteoclasts and their expression of mRNA for several osteoclast differentiation markers, whereas ES significantly reduced these changes; SCI decreased osteoblast numbers, but increased expression in these cells of receptor activator of NF-κB ligand (RANKL) mRNA, whereas ES increased expression of osteoprotegerin (OPG) and the OPG/RANKL ratio. A microarray analysis revealed that ES partially reversed SCI-induced alterations in expression of genes involved in signaling through Wnt, FSH, parathyroid hormone (PTH), oxytocin, and calcineurin/nuclear factor of activated T-cells (NFAT) pathways. ES mitigated SCI-mediated increases in mRNA levels for the Wnt inhibitors DKK1, sFRP2, and sclerostin in ex vivo cultured osteoblasts. Our results demonstrate an anti-bone-resorptive activity of muscle contraction by ES that develops rapidly and is independent of the CNS. The pathways involved, particularly Wnt signaling, suggest future strategies to minimize bone loss after immobilization.


Assuntos
Reabsorção Óssea/fisiopatologia , Contração Muscular , Transcriptoma , Animais , Células da Medula Óssea/fisiologia , Reabsorção Óssea/sangue , Reabsorção Óssea/patologia , Diferenciação Celular , Células Cultivadas , Sistema Nervoso Central/fisiopatologia , Colágeno Tipo I/sangue , Estimulação Elétrica , Feminino , Fêmur/metabolismo , Fêmur/patologia , Membro Posterior/inervação , Membro Posterior/fisiopatologia , Músculo Esquelético/inervação , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Tamanho do Órgão , Osteoblastos/metabolismo , Osteoblastos/fisiologia , Osteocalcina/sangue , Osteoclastos/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais
18.
PLoS One ; 7(10): e47058, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056580

RESUMO

Epidemiologic studies correlate low vitamin C intake with bone loss. The genetic deletion of enzymes involved in de novo vitamin C synthesis in mice, likewise, causes severe osteoporosis. However, very few studies have evaluated a protective role of this dietary supplement on the skeleton. Here, we show that the ingestion of vitamin C prevents the low-turnover bone loss following ovariectomy in mice. We show that this prevention in areal bone mineral density and micro-CT parameters results from the stimulation of bone formation, demonstrable in vivo by histomorphometry, bone marker measurements, and quantitative PCR. Notably, the reductions in the bone formation rate, plasma osteocalcin levels, and ex vivo osteoblast gene expression 8 weeks post-ovariectomy are all returned to levels of sham-operated controls. The study establishes vitamin C as a skeletal anabolic agent.


Assuntos
Ácido Ascórbico/uso terapêutico , Densidade Óssea/efeitos dos fármacos , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Osteoporose/diagnóstico por imagem , Osteoporose/prevenção & controle , Ovariectomia , Radiografia
19.
J Intensive Care Med ; 27(5): 312-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21436164

RESUMO

OBJECTIVE: Patients who remain critically ill for prolonged periods and require tracheotomy, defined as chronic critical illness (CCI), display elevated levels of bone resorption. The measurement of bone turnover markers reveals that osteoclastic bone resorption is not only enhanced but also uncoupled from osteoblastic bone formation. We examine the effect of ibandronate on bone turnover in patients with CCI. METHODS: This study is a prospective, double-blind, placebo-controlled trial, in which 20 postmenopausal female participants with CCI were followed for an 11-day period after the administration of a single intravenous dose of ibandronate (3 mg). All participants were treated with ergocalciferol (2000 IU daily), calcium carbonate (1250 mg daily), and calcitriol (0.25 µg daily). RESULTS: The ibandronate group showed a 34% decrease in serum C-telopeptide (CTX) levels (a marker of osteoclastic activity) on day 6, while the placebo group showed a 13% increase (P = .01). By day 11, CTX levels in ibandronate group were not significantly different than baseline or from the placebo group. Osteocalcin (OCN) levels (a marker of osteoblast activity) increased by 78% compared to baseline in the ibandronate group (P = .01) and by 42% in the placebo group (P = .05). There were no significant differences in OCN between the 2 groups throughout the study. Parathyroid hormone levels remained constant throughout the study. No adverse events were observed. CONCLUSION: A single dose of intravenous ibandronate causes a significant but transient reduction in osteoclast activity in patients with CCI, which persists over a 6-day period.


Assuntos
Doenças Ósseas , Estado Terminal , Difosfonatos , Análise de Variância , Doenças Ósseas/tratamento farmacológico , Doença Crônica , Difosfonatos/uso terapêutico , Feminino , Humanos , Masculino , Análise por Pareamento , Modelos Estatísticos , Hormônio Paratireóideo/sangue , Estudos Prospectivos , Resultado do Tratamento , Vitamina D/sangue , Vitamina D/uso terapêutico
20.
Biochem Biophys Res Commun ; 411(3): 512-5, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21741363

RESUMO

Oxytocin (OT) is a primitive neurohypophyseal hormone that plays a primary and indispensible role in mammalian lactation. We have shown recently that OT also regulates bone remodeling, mainly bone formation, with remarkable sensitivity. We now show that OT, apart from its neurohypophyseal origin, is produced in abundance by both human and murine osteoblasts. Production of osteoblast OT is under the control of estrogen, which acts by activating the MAP kinase Erk. This non-genomic mechanism of estrogen action is in stark contrast to its genomic control of OT receptor (OTR) expression. We surmise that there is a local feed-forward loop in bone marrow through which the OT so produced from osteoblasts in response to estrogen acts upon its receptor to exert a potent anabolic action.


Assuntos
Estrogênios/metabolismo , Osteoblastos/metabolismo , Ocitocina/biossíntese , Animais , Células Cultivadas , Humanos , Camundongos , Osteoblastos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA