Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Angew Chem Int Ed Engl ; 63(20): e202402950, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38512110

RESUMO

The electrochemical synthesis of ethylene oxide (EO) using ethylene and water under ambient conditions presents a low-carbon alternative to existing industrial production process. Yet, the electrocatalytic ethylene epoxidation route is currently hindered by largely insufficient activity, EO selectivity, and long-term stability. Here we report a single atom Ru-doped hollandite structure KIr4O8 (KIrRuO) nanowire catalyst for efficient EO production via a chloride-mediated ethylene epoxidation process. The KIrRuO catalyst exhibits an EO partial current density up to 0.7 A cm-2 and an EO yield as high as 92.0 %. The impressive electrocatalytic performance towards ethylene epoxidation is ascribed to the modulation of electronic structures of adjacent Ir sites by single Ru atoms, which stabilizes the *CH2CH2OH intermediate and facilitates the formation of active Cl2 species during the generation of 2-chloroethanol, the precursor of EO. This work provides a single atom modulation strategy for improving the reactivity of adjacent metal sites in heterogeneous electrocatalysts.

3.
Faraday Discuss ; 248(0): 89-101, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-37753847

RESUMO

The reaction mechanism underpinning the operation of K-O2 batteries, particularly the O2 reactions at the positive electrode, is still not completely understood. In this work, by combining in situ Raman spectroelectrochemistry and density functional theory calculations, we report on a fundamental study of K-O2 electrochemistry at a model interface of Au electrode/DMSO electrolyte. The key products and intermediates (O2-, KO2 and K2O2) are identified and their dependency on the electrode potential is revealed. At high potentials, the first reduction intermediate of O2-* radical anions (* denotes the adsorbed state) can desorb from the Au electrode surface and combine with K+ cations in the electrolyte producing KO2via a solution-mediated pathway. At low potentials, O2 can be directly reduced to on the Au electrode surface, which can be further reduced to at extremely low potentials. The fact that K2O2 has only been detected in the very high overpotential regime indicates a lack of KO2 disproportionation reaction both on the Au electrode surface and in the electrolyte solution. This work addresses the fundamental mechanism and origin of the high reversibility of the aprotic K-O2 batteries.

4.
iScience ; 26(10): 107953, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37810218

RESUMO

Copper single-atom alloy catalysts (M@Cu SAAs) have shown great promise for electrochemical CO2 reduction reaction (CO2RR). However, a clear understanding of the CO2RR process on M@Cu SAAs is still lacking. This study uses density functional theoretical (DFT) calculations to obtain a comprehensive mechanism and the origin of activity of M@Cu SAAs. The importance of the adsorption mode of M@Cu is revealed: key intermediates either adsorbed in the adjacent hollow site around Cu atoms (AD mode) or adsorbed directly on the top site of M (SE mode). AD mode generally exhibits finely tuned binding strengths of key intermediates, which significantly enhances the activity of the catalysts. Increasing the coverage of ∗CO on the M@Cu with SE mode leads to relocation of the active site, resulting in improved activity of C2 products. The insights gained in this work have significant implications for rational design strategy toward efficient CO2RR electrocatalysts.

5.
Nat Chem ; 15(9): 1206-1208, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37640850
6.
Small ; 19(45): e2304889, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37438574

RESUMO

Heterogeneous oxides with multiple interfaces provide significant advantages in electrocatalytic activity and stability. However, controlling the local structure of these oxides is challenging. In this work, unique heterojunctions are demonstrated based on two oxide types, which are formed via pyrolysis of a ruthenocene metal-organic framework (Ru-MOF) at specific temperatures. The resulted Ru-MOF-400 exhibits excellent electrocatalytic activity, with an overpotential of 190 mV at a current density of 10 mA cm-2 in 0.1 m HClO4 , and a mass activity of 2557 A gRu -1 , three orders of magnitude higher than commercial RuO2 . The Ru─O─Co bond formed by the incorporation of Co into the rutile lattice of RuO2 inhibits the disolution of Ru. Operando electrochemical investigations and density functional theory results reveal that the Ru-MOF-400 undergo asymmetric dual-active site oxide path mechanism during the acidic oxygen evolution reaction process, which is predominantly mediated by the asymmetric Ru─Co dual active site present at the interfaces between Co3 O4 and CoRuOx .

7.
Small ; 19(40): e2302863, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37263986

RESUMO

Li-ion transport and phase transition of solid electrolytes are critical and fundamental issues governing the rate and cycling performances of solid-state batteries. In this work, in-operando high-pressure nuclear magnetic resonance (NMR) spectroscopy for the solid-state battery is developed and applied, in combination with 6 Li-tracer NMR and high-resolution NMR spectroscopy, to investigate the Li10 GeP2 S12 electrolyte under true-to-life operation conditions. The results reveal that the Li10 GeP2 S12 phase may become more disordered and a large amount of conductive metastable ß-Li3 PS4 as the glassy matrix in the electrolyte transforms into less conductive phases, mainly γ-Li3 PS4 , when high current densities (e.g., ≥0.5 mA cm-2 ) are applied to the electrolyte. The overall Li-transport also varies and shows a tendency of boundary phases and Li10 GeP2 S12 synergistic dominant conduction at high currents. Accordingly, a mechanism of structural change induced by stress variation due to the drastic morphological change during Li-In alloying at high currents, and the local Li+ diffusion coefficient discrepancy is proposed. These new findings of Li-ion transport and boundary phase transition in Li10 GeP2 S12 solid electrolyte under high-pressure and high current density are first reported and will help provide previously lacking insights into the relationship of structure and performance of Li10 GeP2 S12 .

8.
J Chem Phys ; 158(17)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37125721

RESUMO

A wide spectrum of state-of-the-art characterization techniques have been devised to monitor the electrode-electrolyte interface that dictates the performance of electrochemical devices. However, coupling multiple characterization techniques to realize in situ multidimensional analysis of electrochemical interfaces remains a challenge. Herein, we presented a hyphenated differential electrochemical mass spectrometry and attenuated total reflection surface enhanced infrared absorption spectroscopy analytical method via a specially designed electrochemical cell that enables a simultaneous detection of deposited and volatile interface species under electrochemical reaction conditions, especially suitable for non-aqueous, electrolyte-based energy devices. As a proof of concept, we demonstrated the capability of the homemade setup and obtained the valuable reaction mechanisms, by taking the tantalizing reactions in non-aqueous lithium-ion batteries (i.e., oxidation and reduction processes of carbonate-based electrolytes on Li1+xNi0.8Mn0.1Co0.1O2 and graphite surfaces) and lithium-oxygen batteries (i.e., reversibility of the oxygen reaction) as model reactions. Overall, we believe that the coupled and complementary techniques reported here will provide important insights into the interfacial electrochemistry of energy storage materials (i.e., in situ, multi-dimensional information in one single experiment) and generate much interest in the electrochemistry community and beyond.

9.
J Phys Chem Lett ; 14(8): 2148-2154, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36802579

RESUMO

We report evaluating the intrinsic activity of Ni(OH)2, NiFe layered double hydroxides (LDHs), and NiFe-LDH having vacancies for oxygen evolution reaction (OER) by the use of cavity microelectrodes (CMEs) with controllable mass loading. The number of active Ni sites (NNi-sites) ranging from 1 × 1012 to 6 × 1012 is quantitatively correlated with OER current, which reveals that the introduction of Fe-sites and vacancies increases the turnover frequency (TOF) from 0.027 to 0.118 and 0.165 s-1, respectively. Electrochemical surface area (ECSA) is further quantitatively correlated with NNi-sites, which indicates that NNi-sites per unit ECSA (NNi-per-ECSA) is decreased by the introduction of Fe-sites and vacancies. Therefore, the difference of OER current per unit ECSA (JECSA) is reduced compared with that of TOF. The results demonstrate that CMEs provide a good platform to evaluate intrinsic activity with TOF, NNi-per-ECSA, and JECSA more reasonably.

10.
Angew Chem Int Ed Engl ; 62(10): e202216450, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36599807

RESUMO

Solid-electrolyte interphase (SEI) seriously affects battery's cycling life, especially for high-capacity anode due to excessive electrolyte decomposition from particle fracture. Herein, we report an ultrathin SEI (3-4 nm) induced by Cu+ -tailored double electrical layer (EDL) to suppress electrolyte consumption and enhance cycling stability of CuS anode in sodium-ion batteries. Unique EDL with SO3 CF3 -Cu complex absorbing on CuS in NaSO3 CF3 /diglyme electrolyte is demonstrated by in situ surface-enhanced Raman, Cyro-TEM and theoretical calculation, in which SO3 CF3 -Cu could be reduced to CuF2 -rich SEI. Dispersed CuF2 and F-containing compound can provide good interfacial contact for formation of ultrathin and stable SEI film to minimize electrolyte consumption and reduce activation energy of Na+ transport. As a result, the modified CuS delivers high capacity of 402.8 mAh g-1 after 7000 cycles without capacity decay. The insights of SEI construction pave a way for high-stability electrode.

11.
ACS Appl Mater Interfaces ; 14(40): 45484-45493, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36178360

RESUMO

As the one of the core electrolyte solvents for Li-ion batteries, ethylene carbonate (EC) is still irreplaceable for its balance of ionic conductivity and interfacial stability. However, it also defines the boundary for the low-temperature performance of the battery because of its high melting point (36.4 °C). Its immediate sibling, propylene carbonate (PC), has been proposed as its convenient substitute for its much lower melting point (-48.8 °C). Unfortunately, the propylene carbonate-graphite anode interfacial problem has been a puzzle since the days before the advent of the Li-ion battery. Among various strategies to mitigate this issue, blending in selected strong solvents for Li+ to bring down propylene carbonate's presence in the solvation shell has been proven often effective but the mechanism from the interfacial chemistry perspective remains unexplored. Herein, we study a new cosolvent, N-methylpyrrolidone (NMP), for PC-based electrolyte and observe excellent reversibility that approaches the commercial standard, far beyond the similar systems in the past. To understand the mechanism, solvation chemistry analysis and in situ characterizations are undertaken to probe the interfacial chemistry from various standpoints. Based on these results and further theoretical calculation, it is proposed that N-methylpyrrolidone has mediated the reduction process of propylene carbonate to facilitate the growth of a solid electrolyte interphase (SEI) layer akin to ethylene carbonate. Finally, an electrolyte has also been successfully developed based on the NMP/PC couple to outperform the commercial electrolyte by a clear margin when tested in a LiNi0.8Co0.1Mn0.1O2-graphite cell at -30 °C.

12.
Natl Sci Rev ; 9(4): nwac040, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35548381

RESUMO

Aprotic lithium-oxygen (Li-O2) batteries are receiving intense research interest by virtue of their ultra-high theoretical specific energy. However, current Li-O2 batteries are suffering from severe barriers, such as sluggish reaction kinetics and undesired parasitic reactions. Recently, molecular catalysts, i.e. redox mediators (RMs), have been explored to catalyse the oxygen electrochemistry in Li-O2 batteries and are regarded as an advanced solution. To fully unlock the capability of Li-O2 batteries, an in-depth understanding of the catalytic mechanisms of RMs is necessary. In this review, we summarize the working principles of RMs and their selection criteria, highlight the recent significant progress of RMs and discuss the critical scientific and technical challenges on the design of efficient RMs for next-generation Li-O2 batteries.

13.
ACS Appl Mater Interfaces ; 14(22): 25348-25356, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35638586

RESUMO

P2 and O3 structures are two important sodium manganese oxide phases for sodium-ion batteries; however, encounter Na-deficient and poor rate performance, respectively. Herein, a systematic study of NaxMn0.85Al0.1Fe0.05O2 (0.7 ≤ x ≤ 1.0) materials is performed by employing solid-state NMR, X-ray diffraction, and electrochemical analysis, to provide an in-depth understanding on the structure and the correlated performance for the rational design. The interlayer spacing of α-NaMnO2 broadens, and the content of distorted O3 structures (α- and ß-NaMnO2) increases with raising Na content. It is exhibited that the NaMn0.85Al0.1Fe0.05O2 composite material presents better rate and cycling performance than P2-type Na0.7Mn0.85Al0.1Fe0.05O2, delivering a capacity of 87 mAh g-1 at 5 C. Significantly, the determinants of performance are further discussed, which reveal that diffusion coefficient is probably not the decisive factor restricts the rate performance of O3 and composite materials. The phase transition relaxation and the interfacial charge transfer resistance should be seriously addressed for further improvement.

14.
J Phys Chem Lett ; 13(6): 1500-1505, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35130438

RESUMO

Fundamental understanding of the lithium-ion transport mechanism in polymer-inorganic composite electrolyte is crucially important for the rational design of composite electrolytes for solid-state batteries. In this work, the Li+ ion transport pathway in a model composite electrolyte of PEO containing sparsely dispersed LLZO (PEO-LLZO) was studied by an advanced characterization technique, i.e., 6Li-tracer NMR spectroscopy. By analyzing the 6Li distribution within the PEO-LLZO composite at the end of the discharge of an electrochemical cell of 6Li | PEO-LLZO | stainless steel with a fixed capacity (less than the total amount of the Li+ in the composite) at various current densities, it is found that the interfacial barrier between LLZO and PEO could cause a reduced Li+ flux through LLZO, particularly at high current densities, and therefore plays a critical role in determining the Li+ transport pathway in the composite electrolyte. This work provides an intuitive picture of Li+ ion transport in a polymer-inorganic composite electrolyte that is helpful to optimize and design better composite electrolytes.

15.
Sci Adv ; 8(3): eabm1899, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35061529

RESUMO

The advancement of lithium-oxygen (Li-O2) batteries has been hindered by challenges including low discharge capacity, poor energy efficiency, severe parasitic reactions, etc. We report an Li-O2 battery operated via a new quenching/mediating mechanism that relies on the direct chemical reactions between a versatile molecule and superoxide radical/Li2O2. The battery exhibits a 46-fold increase in discharge capacity, a low charge overpotential of 0.7 V, and an ultralong cycle life >1400 cycles. Featuring redox-active 2,2,6,6-tetramethyl-1-piperidinyloxy moieties bridged by a quenching-active perylene diimide backbone, the tailor-designed molecule acts as a redox mediator to catalyze discharge/charge reactions and serves as a reusable superoxide quencher to chemically react with superoxide species generated during battery operation. The all-in-one molecule can simultaneously tackle issues of parasitic reactions associated with superoxide radicals, singlet oxygen, high overpotentials, and lithium corrosion. The molecular design of multifunctional additives combining various capabilities opens a new avenue for developing high-performance Li-O2 batteries.

16.
Nano Lett ; 22(1): 501-507, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34962821

RESUMO

A fundamental understanding of the reaction process is essential to predict and enhance the performance of electrochemical devices. As a central reaction in aprotic lithium-oxygen (Li-O2) batteries, the oxygen reduction reaction (ORR) has been confronted with the "sudden-death" phenomenon caused by the cathode passivation from discharge product Li2O2. The soluble catalyst (e.g., reduction mediator) promoted solution-mediated ORR represents an elegant solution. However, no direct molecular evidence is available so far, and its link to Li-O2 batteries performance remains hypothetical. Here, we present in situ surface-enhanced Raman spectroscopy and obtain direct spectroscopic evidence (i.e., LiAQ and LiAQO2) of the solution-mediated ORR on a model anthraquinone (AQ, a typical reduction mediator)-immobilized Au electrode. With the assistance of density functional theory calculations and differential electrochemical mass spectrometry, the related elementary reaction steps of the solution-mediated ORR are proposed. This work provides intuitive insights into the AQ-catalyzed solution-mediated ORR mechanism that is helpful in the optimization and tailor-design of soluble catalysts for excellent next-generation Li-O2 batteries.

17.
Adv Mater ; 34(7): e2106618, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34862816

RESUMO

The lithium-sulfur (Li-S) battery is one of the most promising next generation energy storage systems due to its high theoretical specific energy. However, the shuttle effect of soluble lithium polysulfides formed during cell operation is a crucial reason for the low cyclability suffered by current Li-S batteries. As a result, an in-depth mechanistic understanding of the sulfur cathode redox reactions is urgently required for further advancement of Li-S batteries. Herein, the direct observation of polysulfides in a Li-S battery is reported by an in situ hyphenated technique of electrochemistry and mass spectrometry. Several short-lived lithium polysulfide intermediates during sulfur redox have been identified. Furthermore, this method is applied to a mechanistic study of an electrocatalyst that has been observed to promote the polysulfides conversion in a Li-S cell. Through the abundance distributions of various polysulfides before and after adding the electrocatalyst, compelling experimental evidences of catalytic selectivity of cobalt phthalocyanine to those long-chain polysulfide intermediates are obtained. This work can provide guidance for the design of novel cathode to overcome the shuttle effect and facilitate the sulfur redox kinetics.

18.
J Chem Phys ; 155(18): 184702, 2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34773946

RESUMO

Germanium (Ge) has become a promising anode material for lithium-ion batteries (LIBs) due to its high theoretical capacity and decent electron/ion conductivity, but it exhibits inferior lifespan caused by dramatic volume variations during the (de)lithiation process. Herein, hierarchically, nanoporous Ge (np-Ge) was fabricated by the combination of selective phase corrosion with chemical dealloying. As an anode for LIBs, the np-Ge electrode exhibits marvelous cycling stability with capacity retentions of 1060.0 mA h g-1 at 0.2 A g-1 and 767.1 mA h g-1 at 1 A g-1 after 100 cycles. Moreover, the electrode shows excellent rate capability with a capacity retention of 844.2 mA h g-1 at 5 A g-1. Noticeably, the (de)lithiation mechanisms of np-Ge and porous Si-Ge (p-Si6Ge4) were unveiled by operando X-ray diffraction.

19.
ACS Appl Mater Interfaces ; 13(33): 39157-39164, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34378380

RESUMO

All-solid Li-O2 batteries have been constructed with Ag nanowire (AgNW) cathodes coated on Au-buffered garnet ceramic electrolytes and Li anodes on the other sides. Benefiting from the clean contacts of Li+, e-, and O2 on the AgNWs, the surface pathway reactions are demonstrated. Upon discharge, two types of Li2O2 morphologies appear. The film-like Li2O2 forms around the smooth surfaces of AgNWs, and hollow disk-like Li2O2 forms at the joints in between the AgNWs as well as at the garnet/AgNW interfaces. The formation of films and hollow disks is in accordance with the process of O2 + Li+ + e- → LiO2 and 2LiO2 → Li2O2 + O2, indicating that the disproportionation of LiO2 occurs at the solid interfaces. During the initial charge, decomposition occurs below the potential of 3.5 V, indicating the process of Li2O2 → LiO2 + Li+ + e- and LiO2 → Li+ + e- + O2 rather than Li2O2 → 2Li+ + 2e- + O2. The Li2O2 decomposition starts at the AgNWs/Li2O2 interfaces, causing the film-like Li2O2 to shrink and the gas to release, followed by the collapse of hollow disk-like Li2O2. The results here clearly disclose the Li-O2 reaction mechanism at the all-solid interfaces, facilitating a deep understanding of key factors influencing the electrochemical performance of the solid-state Li-O2 batteries.

20.
Materials (Basel) ; 14(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34361419

RESUMO

Today, the requirement for clean, highly efficient, and safe energy seems to be higher and higher due to non-renewable energy and pollution of the environment. At this moment, lithium-ion batteries (LIBs) look like a reliable solution for this dilemma since they have huge energy density. However, the flammability of the conventional electrolyte used in the LIBs is one of critical disadvantages of LIBs, which compromises the safety issue of LIBs. Herein, we reported a non-flammable zwitterionic ionic liquid-based electrolyte named TLPEC, which was fabricated by simply mixing a novel zwitterionic ionic liquid TLP (93 wt%) and ethylene carbonate (EC, 7 wt%). The TLPEC electrolyte exhibited a wide electrochemical potential window of 1.65-5.10 V and a robust ionic conductivity of 1.0 × 10-3 S cm-1 at 20 °C, which renders TLPEC to be a suitable electrolyte for LIBs with enhanced safety performance. The LIBs, with TLPEC as the electrolyte, exhibited an excellent performance in terms of excellent rate capability, cycling stability, and high specific capacity at 25 and 60 °C, which were attributed to the stability and high ionic conductivity of TLPEC electrolyte during cycling as well as the excellent interface compatibility of TLPEC electrolyte with lithium anode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA