Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(30): 14152-14161, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38995295

RESUMO

The influence of cooling history for the Zn3Ga2Ge2O10/Cr3+ phosphors prepared by solid state reaction on the spectral properties was discovered, and an anticounterfeiting scheme based on the identification with smartphone was proposed and experimentally demonstrated using the studied phosphors. A combination of color-tunable visible fluorescence emission and near-infrared (NIR) afterglow emission in Zn3Ga2Ge2O10/x mol % Cr3+(x = 0, 0.05, 1, 2, 3, and 4) phosphors to achieve multimode anticounterfeiting was reported. It is found that with the increasing Cr3+ concentrations, the visible emission can be tuned from green, light pink, and light red to deep red under 254 nm ultraviolet (UV) excitation. This phenomenon is related to the formation of oxygen vacancies in the host during the process of natural cooling and the characteristic emission of Cr3+. In addition, the persistent time of the Cr3+ emission centered at 700 nm can be also tuned by various Cr3+ concentrations. A possible mechanism was deduced to explain the afterglow phenomenon. Lastly, a flower pattern applied in anticounterfeiting was fabricated using the Zn3Ga2Ge2O10/x mol % Cr3+ (x = 0, 0.05, 1, 2, 3, and 4) phosphors to present tunable color and NIR afterglow signals at different excitation modes, and the camera of smartphone was chosen as a detection tool to take the NIR images. The results obtained above suggest that the prepared phosphors at natural cooling condition have great potential in affording advanced optical anticounterfeiting.

2.
ISA Trans ; 148: 24-31, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38514286

RESUMO

This paper addresses the automatic berthing of a maritime autonomous surface ship operating in a confined water environment subject to static obstacles, dynamic obstacles, thruster constraints, and space constraints due to shorelines. A safety-certified active disturbance rejection control (ADRC) method is proposed for achieving the automatic berthing task of an MASS in the presence of model uncertainties and ocean disturbances. An extended state observer (ESO) based on a second-order robust exact differentiator (RED) is employed to estimate an extended state vector consisting of internal model uncertainties and external ocean disturbances. With the aid of the RED-based ESO, a nominal ADRC law is designed to achieve the position and heading stabilization. To avoid collisions with static obstacles, dynamic obstacles, and shorelines, input-to-state safe high-order control barrier functions are used to guarantee safety. Optimized control signals are obtained based on a constrained quadratic programming (QP) problem within safety constraints. In order to translate the control signals into the individual thruster command, a constrained QP problem is further used to search for optimized commands in real time. It is proven that the closed-loop automatic berthing system is input-to-state stable. By using the proposed method, the MASS is able to reach the desired position and heading with collision avoidance. Simulation results verify the effectiveness of the proposed safety-certified ADRC method for automatic berthing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA