Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Acta Biomater ; 174: 269-280, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38072224

RESUMO

The Cholla cactus is a species of cacti that survives in arid environments and produces a unique mesh-like porous wood. In this article, we present a comprehensive investigation on the hierarchical structure and micromechanical properties of the Cholla cactus wood. Multiple approaches consisting of X-ray tomography, scanning electron microscopy, scanning probe microscopy, nanoindentation, and finite element simulations were used to gain insight into the structure, property, and design principles of the Cholla cactus wood. The microstructure of the Cholla cactus wood consists of different components, including vessels, rays, and fibers. In the present study, we quantitatively describe the structure of each of these wood components and their likely functions, both from the perspective of biological and mechanical behavior. Nanoindentation experiments revealed for the first time that the cell walls of the fibers exhibit stiffness and hardness higher than those of rays. Furthermore, the idea of making porous, thin-walled cylinders was abstracted from the design of vessel elements, and the structures inspired by this principle were studied in tensile and torsional loading conditions using finite element simulations. Finite element simulations revealed that the utilization of a larger volume of material to carry the load leads to an increase in toughness of these structures, and thus suggested that the pores should be architected to maximize the distribution of load. STATEMENT OF SIGNIFICANCE: The Cholla cactus wood possess a unique hierarchical structure that enables it to thrive in arid environments. Our correlative microscopy approach reveals incredible strategies that individual wood components exhibit to enable the survival of Cholla cactus in extreme environments. The present work quantifies the microstructure and mechanical properties of this very interesting natural system. We further investigate a design principle inspired by the vessel elements, one of the wood components of Cholla cactus, using finite element simulations. The study presented here advances our understanding of the structural significance of Cholla cactus and potentially other desert plants and will further help design architected structural materials.


Assuntos
Opuntia , Madeira , Porosidade , Dureza , Microscopia Eletrônica de Varredura
2.
Acta Biomater ; 162: 304-311, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36963595

RESUMO

The fibers of the deep-sea sponge Euplectella aspergillum exhibit exceptional mechanical properties due to their unique layered structure at a micrometer length scale. In the present study, we utilize a correlative approach comprising of in situ tensile testing inside a scanning electron microscope (SEM) and post-failure fractography to precisely understand mechanisms through which layered architecture of fibers fracture and improves damage tolerance in tensile loading condition. The real-time observation of fibers in the present study confirms for the first time that the failure starts from the surface of fibers and proceeds to the center through successive layers. The concentric layers surrounding the central core sacrifice themselves and protect the central core through various toughening mechanisms like crack deflection, crack arrest, interface debonding, and fiber pullout. STATEMENT OF SIGNIFICANCE: Biological materials often exhibit multiscale hierarchical structures that can be incorporated into the design of next generation of engineering materials. The fibers of deep-sea sponge E. aspergillum possess core-shell like layered architecture. Our in situ study reveals astounding strategies by which this architecture delays the fracture of the fiber. The core-shell architecture of these fibers behaves like fiber-reinforced ceramic matrix composite, where the outer shells act as a matrix and the central core acts as a fiber. The outer shells take the environmental brunt and scarify themselves to protect the central core. The precise understanding of damage evolution presented here will help to design architected materials for load-bearing applications.


Assuntos
Poríferos , Dióxido de Silício , Poríferos/química
3.
Integr Comp Biol ; 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35767863

RESUMO

Biodiversity provides a massive library of ideas for bio-inspired design, but the sheer number of species to consider can be daunting. Current approaches for sifting through biodiversity to identify relevant biological models include searching for champion adapters that are particularly adept at solving a particular design challenge. While the champion adapter approach has benefits, it tends to focus on a narrow set of popular models while neglecting the majority of species. An alternative approach to bio-inspired design is the comparative method, which leverages biodiversity by drawing inspiration across a broad range of species. This approach uses methods in phylogenetics to map traits across evolutionary trees and compare trait variation to infer structure-function relationships. Although comparative methods have not been widely used in bio-inspired design, they have led to breakthroughs in studies on gecko-inspired adhesives and multifunctionality of butterfly wing scales. Here we outline how comparative methods can be used to complement existing approaches to bioinspired design, and we provide an example focused on bio-inspired lattices, including honeycomb and glass sponges. We demonstrate how comparative methods can lead to breakthroughs in bio-inspired applications as well as answer major questions in biology, which can strengthen collaborations with biologists and produce deeper insights into biological function.

4.
Ecol Evol ; 11(14): 9856-9863, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34306668

RESUMO

Understanding how different taxa respond to global warming is essential for predicting future changes and elaborating strategies to buffer them. Tardigrades are well known for their ability to survive environmental stressors, such as drying and freezing, by undergoing cryptobiosis and rapidly recovering their metabolic function after stressors cease. Determining the extent to which animals that undergo cryptobiosis are affected by environmental warming will help to understand the real magnitude climate change will have on these organisms. Here, we report on the responses of tardigrades within a five-year-long, field-based artificial warming experiment, which consisted of 12 open-top chambers heated to simulate the projected effects of global warming (ranging from 0 to 5.5°C above ambient temperature) in a temperate deciduous forest of North Carolina (USA). To elucidate the effects of warming on the tardigrade community inhabiting the soil litter, three community diversity indices (abundance, species richness, and Shannon diversity) and the abundance of the three most abundant species (Diphascon pingue, Adropion scoticum, and Mesobiotus sp.) were determined. Their relationships with air temperature, soil moisture, and the interaction between air temperature and soil moisture were tested using Bayesian generalized linear mixed models. Despite observed negative effects of warming on other ground invertebrates in previous studies at this site, long-term warming did not affect the abundance, richness, or diversity of tardigrades in this experiment. These results are in line with previous experimental studies, indicating that tardigrades may not be directly affected by ongoing global warming, possibly due to their thermotolerance and cryptobiotic abilities to avoid negative effects of stressful temperatures, and the buffering effect on temperature of the soil litter substrate.

5.
Proc Biol Sci ; 288(1948): 20210141, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33849311

RESUMO

Phenotypic plasticity allows organisms to respond to changing environments throughout their lifetime, but these changes are rarely reversible. Exceptions occur in relatively long-lived vertebrate species that exhibit seasonal plasticity in brain size, although similar changes have not been identified in short-lived species, such as insects. Here, we investigate brain plasticity in reproductive workers of the ant Harpegnathos saltator. Unlike most ant species, workers of H. saltator are capable of sexual reproduction, and they compete in a dominance tournament to establish a group of reproductive workers, termed 'gamergates'. We demonstrated that, compared to foragers, gamergates exhibited a 19% reduction in brain volume in addition to significant differences in behaviour, ovarian status, venom production, cuticular hydrocarbon profile, and expression profiles of related genes. In experimentally manipulated gamergates, 6-8 weeks after being reverted back to non-reproductive status their phenotypes shifted to the forager phenotype across all traits we measured, including brain volume, a trait in which changes were previously shown to be irreversible in honeybees and Drosophila. Brain plasticity in H. saltator is therefore more similar to that found in some long-lived vertebrates that display reversible changes in brain volume throughout their lifetimes.


Assuntos
Formigas , Animais , Comportamento Animal , Feminino , Humanos , Tamanho do Órgão , Reprodução , Comportamento Social , Classe Social
6.
Biomimetics (Basel) ; 5(4)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158131

RESUMO

The honeybee's comb has inspired the design of engineering honeycomb core that primarily abstract the hexagonal cell shape and exploit its mass minimizing properties to construct lightweight panels. This work explored three additional design features that are part of natural honeybee comb but have not been as well studied as design features of interest in honeycomb design: the radius at the corner of each cell, the coping at the top of the cell walls, and the interface between cell arrays. These features were first characterized in natural honeycomb using optical and X-ray techniques and then incorporated into honeycomb core design and fabricated using an additive manufacturing process. The honeycomb cores were then tested in out-of-plane compression and bending, and since all three design features added mass to the overall structure, all metrics of interest were examined per unit mass to assess performance gains despite these additions. The study concluded that the presence of an interface increases specific flexural modulus in bending, with no significant benefit in out-of-plane compression; coping radius positively impacts specific flexural strength, however, the corner radius has no significant effect in bending and actually is slightly detrimental for out-of-plane compression testing.

7.
Proc Biol Sci ; 286(1908): 20191026, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31387509

RESUMO

The microbiome of built structures has considerable influence over an inhabitant's well-being, yet the vast majority of research has focused on human-built structures. Ants are well-known architects, capable of constructing elaborate dwellings, the microbiome of which is underexplored. Here, we explore the bacterial and fungal microbiomes in functionally distinct chambers within and outside the nests of Azteca alfari ants in Cecropia peltata trees. We predicted that A. alfari colonies (1) maintain distinct microbiomes within their nests compared to the surrounding environment, (2) maintain distinct microbiomes among nest chambers used for different functions, and (3) limit both ant and plant pathogens inside their nests. In support of these predictions, we found that internal and external nest sampling locations had distinct microbial communities, and A. alfari maintained lower bacterial richness in their 'nurseries'. While putative animal pathogens were suppressed in chambers that ants actively inhabited, putative plant pathogens were not, which does not support our hypothesis that A. alfari defends its host trees against microbial antagonists. Our results show that ants influence microbial communities inside their nests similar to studies of human homes. Unlike humans, ants limit the bacteria in their nurseries and potentially prevent the build-up of insect-infecting pathogens. These results highlight the importance of documenting how indoor microbiomes differ among species, which might improve our understanding of how to promote indoor health in human dwellings.


Assuntos
Formigas/microbiologia , Formigas/fisiologia , Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Microbiota , Animais , Bactérias/classificação , Cecropia , Fungos/classificação , Reprodução
8.
Ecol Evol ; 8(5): 2534-2541, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29531674

RESUMO

Many ectotherms show a decrease in body size with increasing latitude due to changes in climate, a pattern termed converse Bergmann's rule. Urban conditions-particularly warmer temperatures and fragmented landscapes-may impose stresses on development that could disrupt these body size patterns. To test the impact of urbanization on development and latitudinal trends in body size, we launched a citizen science project to collect periodical cicadas (Magicicada septendecim) from across their latitudinal range during the 2013 emergence of Brood II. Periodical cicadas are long-lived insects whose distribution spans a broad latitudinal range covering both urban and rural habitats. We used a geometric morphometric approach to assess body size and developmental stress based on fluctuating asymmetry in wing shape. Body size of rural cicadas followed converse Bergmann's rule, but this pattern was disrupted in urban habitats. In the north, urban cicadas were larger than their rural counterparts, while southern populations showed little variation in body size between habitats. We detected no evidence of differences in developmental stress due to urbanization. To our knowledge, this is the first evidence that urbanization disrupts biogeographical trends in body size, and this pattern highlights how the effects of urbanization may differ over a species' range.

9.
R Soc Open Sci ; 5(2): 171332, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29515850

RESUMO

Social insects live in dense groups with a high probability of disease transmission and have therefore faced strong pressures to develop defences against pathogens. For this reason, social insects have been hypothesized to invest in antimicrobial secretions as a mechanism of external immunity to prevent the spread of disease. However, empirical studies linking the evolution of sociality with increased investment in antimicrobials have been relatively few. Here we quantify the strength of antimicrobial secretions among 20 ant species that cover a broad spectrum of ant diversity and colony sizes. We extracted external compounds from ant workers to test whether they inhibited the growth of the bacterium Staphylococcus epidermidis. Because all ant species are highly social, we predicted that all species would exhibit some antimicrobial activity and that species that form the largest colonies would exhibit the strongest antimicrobial response. Our comparative approach revealed that strong surface antimicrobials are common to particular ant clades, but 40% of species exhibited no antimicrobial activity at all. We also found no correlation between antimicrobial activity and colony size. Rather than relying on antimicrobial secretions as external immunity to control pathogen spread, many ant species have probably developed alternative strategies to defend against disease pressure.

10.
Cell ; 170(4): 736-747.e9, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28802043

RESUMO

Ants exhibit cooperative behaviors and advanced forms of sociality that depend on pheromone-mediated communication. Odorant receptor neurons (ORNs) express specific odorant receptors (ORs) encoded by a dramatically expanded gene family in ants. In most eusocial insects, only the queen can transmit genetic information, restricting genetic studies. In contrast, workers in Harpegnathos saltator ants can be converted into gamergates (pseudoqueens) that can found entire colonies. This feature facilitated CRISPR-Cas9 generation of germline mutations in orco, the gene that encodes the obligate co-receptor of all ORs. orco mutations should significantly impact olfaction. We demonstrate striking functions of Orco in odorant perception, reproductive physiology, and social behavior plasticity. Surprisingly, unlike in other insects, loss of OR functionality also dramatically impairs development of the antennal lobe to which ORNs project. Therefore, the development of genetics in Harpegnathos establishes this ant species as a model organism to study the complexity of eusociality.


Assuntos
Formigas/crescimento & desenvolvimento , Formigas/genética , Proteínas de Insetos/genética , Receptores Odorantes/genética , Comportamento Social , Sequência de Aminoácidos , Animais , Formigas/anatomia & histologia , Formigas/fisiologia , Antenas de Artrópodes/anatomia & histologia , Antenas de Artrópodes/metabolismo , Sequência de Bases , Comportamento Animal , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Feminino , Técnicas de Inativação de Genes , Proteínas de Insetos/química , Masculino , Mutação , Feromônios/metabolismo , Receptores Odorantes/química
11.
Cell ; 170(4): 748-759.e12, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28802044

RESUMO

Social insects are emerging models to study how gene regulation affects behavior because their colonies comprise individuals with the same genomes but greatly different behavioral repertoires. To investigate the molecular mechanisms that activate distinct behaviors in different castes, we exploit a natural behavioral plasticity in Harpegnathos saltator, where adult workers can transition to a reproductive, queen-like state called gamergate. Analysis of brain transcriptomes during the transition reveals that corazonin, a neuropeptide homologous to the vertebrate gonadotropin-releasing hormone, is downregulated as workers become gamergates. Corazonin is also preferentially expressed in workers and/or foragers from other social insect species. Injection of corazonin in transitioning Harpegnathos individuals suppresses expression of vitellogenin in the brain and stimulates worker-like hunting behaviors, while inhibiting gamergate behaviors, such as dueling and egg deposition. We propose that corazonin is a central regulator of caste identity and behavior in social insects.


Assuntos
Formigas/metabolismo , Proteínas de Insetos/metabolismo , Neuropeptídeos/metabolismo , Animais , Formigas/genética , Formigas/crescimento & desenvolvimento , Comportamento Animal , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Comportamento Social
12.
Integr Comp Biol ; 57(1): 112-120, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28541481

RESUMO

SYNOPSIS: Few studies have quantified the relative importance of direct effects of climate change on communities versus indirect effects that are mediated thorough species interactions, and the limited evidence is conflicting. Trait-based approaches have been popular in studies of climate change, but can they be used to estimate direct versus indirect effects? At the species level, thermal tolerance is a trait that is often used to predict winners and losers under scenarios of climate change. But thermal tolerance might also inform when species interactions are likely to be important because only subsets of species will be able to exploit the available warmer climatic niche space, and competition may intensify in the remaining, compressed cooler climatic niche space. Here, we explore the relative roles of the direct effects of temperature change and indirect effects of species interactions on forest ant communities that were heated as part of a large-scale climate manipulation at high- and low-latitude sites in eastern North America. Overall, we found mixed support for the importance of negative species interactions (competition), but found that the magnitude of these interaction effects was predictable based on the heat tolerance of the focal species. Forager abundance and nest site occupancy of heat-intolerant species were more often influenced by negative interactions with other species than by direct effects of temperature. Our findings suggest that measures of species-specific heat tolerance may roughly predict when species interactions will influence responses to global climate change.


Assuntos
Formigas/fisiologia , Mudança Climática , Ecossistema , Termotolerância/fisiologia , Animais , Florestas , Temperatura Alta , América do Norte , Especificidade da Espécie
13.
J Insect Physiol ; 100: 77-81, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28549655

RESUMO

The frequency of warm winter days is increasing under global climate change, but how organisms respond to warmer winters is not well understood. Most studies focus on growing season responses to warming. Locomotor performance is often highly sensitive to temperature, and can determine fitness outcomes through a variety of mechanisms including resource acquisition and predator escape. As a consequence, locomotor performance, and its impacts on fitness, may be strongly affected by winter warming in winter-active species. Here we use the acorn ant, Temnothorax curvispinosus, to explore how thermal performance (temperature-driven plasticity) in running speed is influenced by experimental winter warming of 3-5°C above ambient in a field setting. We used running speed as a measure of performance as it is a common locomotor trait that influences acquisition of nest sites and food in acorn ants. Experimental winter warming significantly altered thermal performance for running speed at high (26 and 36°C) but not low test temperatures (6 and 16°C). Although we saw little differentiation in thermal performance at cooler test temperatures, we saw a marked increase in running speed at the hotter test temperatures for ants that experienced warmer winters compared with those that experienced cooler winters. Our results provide evidence that overwintering temperatures can substantially influence organismal performance, and suggest that we cannot ignore overwintering effects when forecasting organismal responses to environmental changes in temperature.


Assuntos
Formigas/fisiologia , Temperatura Alta , Atividade Motora , Animais , Mudança Climática , Distribuição Aleatória , Estações do Ano , Tempo (Meteorologia)
14.
Artigo em Inglês | MEDLINE | ID: mdl-27894884

RESUMO

Ecological diversification into thermally divergent habitats can push species toward their physiological limits, requiring them to accommodate temperature extremes through plastic or evolutionary changes that increase persistence under the local thermal regime. One way to withstand thermal stress is to increase production of heat shock proteins, either by maintaining higher baseline abundance within cells or by increasing the magnitude of induction in response to heat stress. We evaluated whether environmental variation was associated with expression of three heat shock protein genes in two closely-related species of woodland ant, Aphaenogaster picea and A. rudis. We compared adult workers from colonies collected from 25 sites across their geographic ranges. Colonies were maintained at two different laboratory temperatures, and tested for the independent effects of environment, phylogeny, and acclimation temperature on baseline and heat-induced gene expression. The annual maximum temperature at each collection site (Tmax) was not a significant predictor of either baseline expression or magnitude of induction of any of the heat shock protein genes tested. A phylogenetic effect was detected only for basal expression of Hsp40, which was lower in the most southern populations of A. rudis and higher in a mid-range population of possible hybrid ancestry. In contrast, a higher acclimation temperature significantly increased baseline expression of Hsc70-4, and increased induction of Hsp40 and Hsp83. Thus, physiological acclimation to temperature variation appears to involve modulation of the heat shock response, whereas other mechanisms are likely to be responsible for evolutionary shifts in thermal performance associated with large-scale climate gradients.


Assuntos
Adaptação Fisiológica , Formigas/fisiologia , Mudança Climática , Resposta ao Choque Térmico , Animais , Expressão Gênica , Proteínas de Choque Térmico/genética
15.
Sci Adv ; 2(10): e1600842, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27819044

RESUMO

How will ecological communities change in response to climate warming? Direct effects of temperature and indirect cascading effects of species interactions are already altering the structure of local communities, but the dynamics of community change are still poorly understood. We explore the cumulative effects of warming on the dynamics and turnover of forest ant communities that were warmed as part of a 5-year climate manipulation experiment at two sites in eastern North America. At the community level, warming consistently increased occupancy of nests and decreased extinction and nest abandonment. This consistency was largely driven by strong responses of a subset of thermophilic species at each site. As colonies of thermophilic species persisted in nests for longer periods of time under warmer temperatures, turnover was diminished, and species interactions were likely altered. We found that dynamical (Lyapunov) community stability decreased with warming both within and between sites. These results refute null expectations of simple temperature-driven increases in the activity and movement of thermophilic ectotherms. The reduction in stability under warming contrasts with the findings of previous studies that suggest resilience of species interactions to experimental and natural warming. In the face of warmer, no-analog climates, communities of the future may become increasingly fragile and unstable.


Assuntos
Formigas/fisiologia , Florestas , Aquecimento Global , Animais , América do Norte
16.
Am Nat ; 187(6): 765-75, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27172595

RESUMO

Social dominance hierarchies are widespread, but little is known about the mechanisms that produce nonlinear structures. In addition to despotic hierarchies, where a single individual dominates, shared hierarchies exist, where multiple individuals occupy a single rank. In vertebrates, these complex dominance relationships are thought to develop from interactions that require higher cognition, but similar cases of shared dominance have been found in social insects. Combining empirical observations with a modeling approach, we show that all three hierarchy structures-linear, despotic, and shared-can emerge from different combinations of simple interactions present in social insects. Our model shows that a linear hierarchy emerges when a typical winner-loser interaction (dominance biting) is present. A despotic hierarchy emerges when a policing interaction is added that results in the complete loss of dominance status for an attacked individual (physical policing). Finally, a shared hierarchy emerges with the addition of a winner-winner interaction that results in a positive outcome for both interactors (antennal dueling). Antennal dueling is an enigmatic ant behavior that has previously lacked a functional explanation. These results show how complex social traits can emerge from simple behaviors without requiring advanced cognition.


Assuntos
Formigas/fisiologia , Comportamento Animal , Hierarquia Social , Agressão , Animais , Comportamento Competitivo , Feminino , Masculino , Modelos Teóricos , Reprodução/fisiologia , Predomínio Social
17.
Proc Biol Sci ; 282(1806): 20142608, 2015 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-25833850

RESUMO

The amount of energy consumed within an average city block is an order of magnitude higher than that consumed in any other ecosystem over a similar area. This is driven by human food inputs, but the consequence of these resources for urban animal populations is poorly understood. We investigated the role of human foods in ant diets across an urbanization gradient in Manhattan using carbon and nitrogen stable isotopes. We found that some-but not all-ant species living in Manhattan's most urbanized habitats had δ(13)C signatures associated with processed human foods. In particular, pavement ants (Tetramorium sp. E) had increased levels of δ(13)C similar to δ(13)C levels in human fast foods. The magnitude of this effect was positively correlated with urbanization. By contrast, we detected no differences in δ(15)N, suggesting Tetramorium feeds at the same trophic level despite shifting to human foods. This pattern persisted across the broader ant community; species in traffic islands used human resources more than park species. Our results demonstrate that the degree urban ants exploit human resources changes across the city and among species, and this variation could play a key role in community structure and ecosystem processes where human and animal food webs intersect.


Assuntos
Formigas/fisiologia , Dieta , Cadeia Alimentar , Animais , Isótopos de Carbono/análise , Cidades , Comportamento Alimentar , Humanos , Cidade de Nova Iorque , Isótopos de Nitrogênio/análise
18.
J Exp Biol ; 217(Pt 9): 1496-503, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24436385

RESUMO

Dominance rank in animal societies is correlated with changes in both reproductive physiology and behavior. In some social insects, dominance status is used to determine a reproductive division of labor, where a few colony members reproduce while most remain functionally sterile. Changes in reproduction and behavior in this context must be coordinated through crosstalk between the brain and the reproductive system. We investigated a role for biogenic amines in forming this connection in the ant Harpegnathos saltator. In this species, workers engage in an elaborate dominance tournament to establish a group of reproductive workers termed gamergates. We analyzed biogenic amine content in the brains of gamergates, inside-workers and foragers under stable colony conditions and found that gamergates had the highest levels of dopamine. Dopamine levels were also positively correlated with increased ovarian activity among gamergates. Next, we experimentally induced workers to compete in a reproductive tournament to determine how dopamine may be involved in the establishment of a new hierarchy. Dopamine levels rose in aggressive workers at the start of a tournament, while workers that were policed by their nestmates (a behavior that inhibits ovarian activity) showed a rapid decline in dopamine. In addition to dopamine, levels of serotonin and tyramine differed among castes, and these changes could contribute to differences in caste-specific behavioral patterns observed among non-reproductive workers. Overall, these results provide support that biogenic amines link changes in behavior and dominance with reproductive activity in H. saltator as well as drive differences in worker task performance.


Assuntos
Formigas/fisiologia , Neurotransmissores/biossíntese , Reprodução/fisiologia , Predomínio Social , Agressão , Animais , Comportamento Animal/fisiologia , Aminas Biogênicas , Encéfalo/metabolismo , Feminino , Ovário/fisiologia
19.
Integr Comp Biol ; 53(6): 965-74, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23892370

RESUMO

Physiological intolerance of high temperatures places limits on organismal responses to the temperature increases associated with global climatic change. Because ants are geographically widespread, ecologically diverse, and thermophilic, they are an ideal system for exploring the extent to which physiological tolerance can predict responses to environmental change. Here, we expand on simple models that use thermal tolerance to predict the responses of ants to climatic warming. We investigated the degree to which changes in the abundance of ants under warming reflect reductions in the thermal niche space for their foraging. In an eastern deciduous forest system in the United States with approximately 40 ant species, we found that for some species, the loss of thermal niche space for foraging was related to decreases in abundance with increasing experimental climatic warming. However, many ant species exhibited no loss of thermal niche space. For one well-studied species, Temnothorax curvispinosus, we examined both survival of workers and growth of colonies (a correlate of reproductive output) as functions of temperature in the laboratory, and found that the range of thermal tolerances for colony growth was much narrower than for survival of workers. We evaluated these functions in the context of experimental climatic warming and found that the difference in the responses of these two attributes to temperature generates differences in the means and especially the variances of expected fitness under warming. The expected mean growth of colonies was optimized at intermediate levels of warming (2-4°C above ambient); yet, the expected variance monotonically increased with warming. In contrast, the expected mean and variance of the survival of workers decreased when warming exceeded 4°C above ambient. Together, these results for T. curvispinosus emphasize the importance of measuring reproduction (colony growth) in the context of climatic change: indeed, our examination of the loss of thermal niche space with the larger species pool could be missing much of the warming impact due to these analyses being based on survival rather than reproduction. We suggest that while physiological tolerance of temperature can be a useful predictive tool for modeling responses to climatic change, future efforts should be devoted to understanding the causes and consequences of variability in models of tolerance calibrated with different metrics of performance and fitness.


Assuntos
Aclimatação/fisiologia , Formigas/fisiologia , Ecossistema , Aquecimento Global , Modelos Biológicos , Animais , Comportamento Apetitivo/fisiologia , Aptidão Genética/fisiologia , Tábuas de Vida , Massachusetts , North Carolina , Dinâmica Populacional , Especificidade da Espécie , Análise de Sobrevida , Temperatura , Árvores
20.
J Insect Physiol ; 58(12): 1643-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23073393

RESUMO

A link between hormones and developmental plasticity has long been established, but understanding how evolution has shaped the physiological systems underlying plasticity remains a major question. Within the eusocial insects, developmental plasticity helps define a reproductive division of labor through the production of distinct queen and worker castes. Caste determination may be triggered via changes in juvenile hormone (JH) levels during specific JH-sensitive periods in development. The timing of these periods, however, can vary and may relate to phenotypic differences observed among species. In order to gain insight into the evolution of caste determining systems in eusocial insects, we investigated the presence of a JH-sensitive period for queen determination in the ant Harpegnathos saltator. This species displays a number of ancestral characteristics, including low queen-worker dimorphism, and should allow insight into the early evolution of caste determining systems in ants. We identified four larval instars in H. saltator, and we found that the application of a JH analog (JHA) to third and fourth instar larvae induced queen development while treatment of early instars did not. This indicated the presence of a JH-sensitive period for queen determination at the end of the larval stage. These results contrast with what has been found in other ant species, where queen determination occurs much earlier in development. Therefore, our results suggest that caste determination originally occurred late in the larval stage in the ancestral condition but has shifted earlier in development in species that began to acquire advanced characteristics. This shift may have facilitated the development of greater queen-worker dimorphism as well as multiple worker castes.


Assuntos
Formigas/crescimento & desenvolvimento , Hormônios Juvenis/fisiologia , Animais , Feminino , Larva/crescimento & desenvolvimento , Masculino , Predomínio Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA