Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Epigenetics Chromatin ; 16(1): 42, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37880732

RESUMO

Cell-cell communication is mediated by membrane receptors and their ligands, such as the Eph/ephrin system, orchestrating cell migration during development and in diverse cancer types. Epigenetic mechanisms are key for integrating external "signals", e.g., from neighboring cells, into the transcriptome in health and disease. Previously, we reported ephrinA5 to trigger transcriptional changes of lncRNAs and protein-coding genes in cerebellar granule cells, a cell model for medulloblastoma. LncRNAs represent important adaptors for epigenetic writers through which they regulate gene expression. Here, we investigate a lncRNA-mediated targeting of DNMT1 to specific gene loci by the combined power of in silico modeling of RNA/DNA interactions and wet lab approaches, in the context of the clinically relevant use case of ephrinA5-dependent regulation of cellular motility of cerebellar granule cells. We provide evidence that Snhg15, a cancer-related lncRNA, recruits DNMT1 to the Ncam1 promoter through RNA/DNA triplex structure formation and the interaction with DNMT1. This mediates DNA methylation-dependent silencing of Ncam1, being abolished by ephrinA5 stimulation-triggered reduction of Snhg15 expression. Hence, we here propose a triple helix recognition mechanism, underlying cell motility regulation via lncRNA-targeted DNA methylation in a clinically relevant context.


Assuntos
RNA Longo não Codificante , RNA Longo não Codificante/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , DNA , Movimento Celular
3.
Sci Rep ; 11(1): 6934, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767215

RESUMO

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an expanded polyglutamine repeat in the huntingtin gene. The neuropathology of HD is characterized by the decline of a specific neuronal population within the brain, the striatal medium spiny neurons (MSNs). The origins of this extreme vulnerability remain unknown. Human induced pluripotent stem cell (hiPS cell)-derived MSNs represent a powerful tool to study this genetic disease. However, the differentiation protocols published so far show a high heterogeneity of neuronal populations in vitro. Here, we compared two previously published protocols to obtain hiPS cell-derived striatal neurons from both healthy donors and HD patients. Patch-clamp experiments, immunostaining and RT-qPCR were performed to characterize the neurons in culture. While the neurons were mature enough to fire action potentials, a majority failed to express markers typical for MSNs. Voltage-clamp experiments on voltage-gated sodium (Nav) channels revealed a large variability between the two differentiation protocols. Action potential analysis did not reveal changes induced by the HD mutation. This study attempts to demonstrate the current challenges in reproducing data of previously published differentiation protocols and in generating hiPS cell-derived striatal MSNs to model a genetic neurodegenerative disorder in vitro.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular , Doença de Huntington , Neurônios/fisiologia , Potenciais de Ação , Animais , Cálcio/metabolismo , Estudos de Casos e Controles , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas , Camundongos Endogâmicos C57BL , Subunidade beta-4 do Canal de Sódio Disparado por Voltagem/metabolismo , Ácido gama-Aminobutírico/metabolismo
4.
Int J Mol Sci ; 22(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572758

RESUMO

The Eph receptor tyrosine kinases and their respective ephrin-ligands are an important family of membrane receptors, being involved in developmental processes such as proliferation, migration, and in the formation of brain cancer such as glioma. Intracellular signaling pathways, which are activated by Eph receptor signaling, are well characterized. In contrast, it is unknown so far whether ephrins modulate the expression of lncRNAs, which would enable the transduction of environmental stimuli into our genome through a great gene regulatory spectrum. Applying a combination of functional in vitro assays, RNA sequencing, and qPCR analysis, we found that the proliferation and migration promoting stimulation of mouse cerebellar granule cells (CB) with ephrinA5 diminishes the expression of the cancer-related lncRNA Snhg15. In a human medulloblastoma cell line (DAOY) ephrinA5 stimulation similarly reduced SNHG15 expression. Computational analysis identified triple-helix-mediated DNA-binding sites of Snhg15 in promoters of genes found up-regulated upon ephrinA5 stimulation and known to be involved in tumorigenic processes. Our findings propose a crucial role of Snhg15 downstream of ephrinA5-induced signaling in regulating gene transcription in the nucleus. These findings could be potentially relevant for the regulation of tumorigenic processes in the context of glioma.


Assuntos
Carcinogênese/genética , Efrina-A5/metabolismo , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/genética , Animais , Carcinogênese/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Humanos , Meduloblastoma/genética , Meduloblastoma/metabolismo , Camundongos , Transdução de Sinais
5.
Front Mol Neurosci ; 14: 807090, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35185464

RESUMO

GABAA receptors are ligand-gated ion channels, which are predominantly permeable for chloride. The neuronal K-Cl cotransporter KCC2 lowers the intraneuronal chloride concentration and thus plays an important role for GABA signaling. KCC2 loss-of-function is associated with seizures and epilepsy. Here, we show that KCC2 is expressed in the majority of parvalbumin-positive interneurons (PV-INs) of the mouse brain. PV-INs receive excitatory input from principle cells and in turn control principle cell activity by perisomatic inhibition and inhibitory input from other interneurons. Upon Cre-mediated disruption of KCC2 in mice, the polarity of the GABA response of PV-INs changed from hyperpolarization to depolarization for the majority of PV-INs. Reduced excitatory postsynaptic potential-spike (E-S) coupling and increased spontaneous inhibitory postsynaptic current (sIPSC) frequencies further suggest that PV-INs are disinhibited upon disruption of KCC2. In vivo, PV-IN-specific KCC2 knockout mice display a reduced seizure threshold and develop spontaneous sometimes fatal seizures. We further found a time dependent loss of PV-INs, which was preceded by an up-regulation of pro-apoptotic genes upon disruption of KCC2.

6.
Adv Exp Med Biol ; 1255: 7-27, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32949387

RESUMO

Within the last decade, single-cell analysis has revolutionized our understanding of cellular processes and heterogeneity across all disciplines of life science. As the transcriptome, genome, or epigenome of individual cells can nowadays be analyzed at low cost and in high-throughput within a few days by modern techniques, tremendous improvements in disease diagnosis on the one hand and the investigation of disease-relevant mechanisms on the other were achieved so far. This relies on the parallel development of reliable cell capturing and single-cell sequencing approaches that have paved the way for comprehensive single-cell studies. Apart from single-cell isolation methods in high-throughput, a variety of methods with distinct specializations were developed, allowing for correlation of transcriptomics with cellular parameters like electrophysiology or morphology.For all single-cell-based approaches, accurate and reliable isolation with proper quality controls is prerequisite, whereby different options exist dependent on sample type and tissue properties. Careful consideration of an appropriate method is required to avoid incorrect or biased data that may lead to misinterpretations.In this chapter, we will provide a broad overview of the current state of the art in matters of single-cell isolation methods mostly applied for sequencing-based downstream analysis, and their respective advantages and drawbacks. Distinct technologies will be discussed in detail addressing key parameters like sample compatibility, viability, purity, throughput, and isolation efficiency.


Assuntos
Separação Celular/métodos , Análise de Célula Única/métodos , Animais , Genoma , Humanos , Transcriptoma
7.
Front Cell Dev Biol ; 8: 639, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793592

RESUMO

Increased life expectancy in modern society comes at the cost of age-associated disabilities and diseases. Aged brains not only show reduced excitability and plasticity, but also a decline in inhibition. Age-associated defects in inhibitory circuits likely contribute to cognitive decline and age-related disorders. Molecular mechanisms that exert epigenetic control of gene expression contribute to age-associated neuronal impairments. Both DNA methylation, mediated by DNA methyltransferases (DNMTs), and histone modifications maintain neuronal function throughout lifespan. Here we provide evidence that DNMT1 function is implicated in the age-related loss of cortical inhibitory interneurons. Dnmt1 deletion in parvalbumin-positive interneurons attenuates their age-related decline in the cerebral cortex. Moreover, conditional Dnmt1-deficient mice show improved somatomotor performance and reduced aging-associated transcriptional changes. A decline in the proteostasis network, responsible for the proper degradation and removal of defective proteins, is implicated in age- and disease-related neurodegeneration. Our data suggest that DNMT1 acts indirectly on interneuron survival in aged mice by modulating the proteostasis network during life-time.

8.
Int J Mol Sci ; 21(15)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751461

RESUMO

The limited regenerative capacity of neurons requires a tightly orchestrated cell death and survival regulation in the context of longevity, as well as age-associated and neurodegenerative diseases. Subordinate to genetic networks, epigenetic mechanisms, such as DNA methylation and histone modifications, are involved in the regulation of neuronal functionality and emerge as key contributors to the pathophysiology of neurodegenerative diseases. DNA methylation, a dynamic and reversible process, is executed by DNA methyltransferases (DNMTs). DNMT1 was previously shown to act on neuronal survival in the aged brain, whereby a DNMT1-dependent modulation of processes relevant for protein degradation was proposed as an underlying mechanism. Properly operating proteostasis networks are a mandatory prerequisite for the functionality and long-term survival of neurons. Malfunctioning proteostasis is found, inter alia, in neurodegenerative contexts. Here, we investigated whether DNMT1 affects critical aspects of the proteostasis network by a combination of expression studies, live cell imaging, and protein biochemical analyses. We found that DNMT1 negatively impacts retrograde trafficking and autophagy, with both being involved in the clearance of aggregation-prone proteins by the aggresome-autophagy pathway. In line with this, we found that the transport of GFP-labeled mutant huntingtin (HTT) to perinuclear regions, proposed to be cytoprotective, also depends on DNMT1. Depletion of Dnmt1 accelerated perinuclear HTT aggregation and improved the survival of cells transfected with mutant HTT. This suggests that mutant HTT-induced cytotoxicity is at least in part mediated by DNMT1-dependent modulation of degradative pathways.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Proteína Huntingtina/metabolismo , Neurônios/metabolismo , Animais , Autofagia , Linhagem Celular , Metilação de DNA , Epigênese Genética , Código das Histonas , Doença de Huntington/metabolismo , Camundongos , Neurônios/patologia , Proteostase
9.
Epigenetics ; 15(11): 1259-1274, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32441560

RESUMO

Apart from the conventional view of repressive promoter methylation, the DNA methyltransferase 1 (DNMT1) was recently described to modulate gene expression through a variety of interactions with diverse epigenetic key players. We here investigated the DNMT1-dependent transcriptional control of the homeobox transcription factor LHX1, which we previously identified as an important regulator in cortical interneuron development. We found that LHX1 expression in embryonic interneurons originating in the embryonic pre-optic area (POA) is regulated by non-canonic DNMT1 function. Analysis of histone methylation and acetylation revealed that both epigenetic modifications seem to be implicated in the control of Lhx1 gene activity and that DNMT1 contributes to their proper establishment. This study sheds further light on the regulatory network of cortical interneuron development including the complex interplay of epigenetic mechanisms.


Assuntos
Código das Histonas , Interneurônios/metabolismo , Proteínas com Homeodomínio LIM/genética , Fatores de Transcrição/genética , Animais , Linhagem Celular Tumoral , Células Cultivadas , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Área Pré-Óptica/citologia , Área Pré-Óptica/embriologia , Área Pré-Óptica/metabolismo , Fatores de Transcrição/metabolismo
10.
Cereb Cortex ; 30(7): 3921-3937, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32147726

RESUMO

The balance of excitation and inhibition is essential for cortical information processing, relying on the tight orchestration of the underlying subcellular processes. Dynamic transcriptional control by DNA methylation, catalyzed by DNA methyltransferases (DNMTs), and DNA demethylation, achieved by ten-eleven translocation (TET)-dependent mechanisms, is proposed to regulate synaptic function in the adult brain with implications for learning and memory. However, focus so far is laid on excitatory neurons. Given the crucial role of inhibitory cortical interneurons in cortical information processing and in disease, deciphering the cellular and molecular mechanisms of GABAergic transmission is fundamental. The emerging relevance of DNMT and TET-mediated functions for synaptic regulation irrevocably raises the question for the targeted subcellular processes and mechanisms. In this study, we analyzed the role dynamic DNA methylation has in regulating cortical interneuron function. We found that DNMT1 and TET1/TET3 contrarily modulate clathrin-mediated endocytosis. Moreover, we provide evidence that DNMT1 influences synaptic vesicle replenishment and GABAergic transmission, presumably through the DNA methylation-dependent transcriptional control over endocytosis-related genes. The relevance of our findings is supported by human brain sample analysis, pointing to a potential implication of DNA methylation-dependent endocytosis regulation in the pathophysiology of temporal lobe epilepsy, a disease characterized by disturbed synaptic transmission.


Assuntos
Metilação de DNA/genética , Endocitose/genética , Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Inibição Neural/genética , Sinapses/metabolismo , Animais , Clatrina , Proteínas do Citoesqueleto/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Epigenoma , Epilepsia do Lobo Temporal/genética , Humanos , Potenciais Pós-Sinápticos Inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Técnicas de Patch-Clamp , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vesículas Sinápticas/metabolismo , Transcriptoma
11.
Epigenetics ; 13(5): 536-556, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29912614

RESUMO

Epigenetic mechanisms of gene regulation, including DNA methylation and histone modifications, call increasing attention in the context of development and human health. Thereby, interactions between DNA methylating enzymes and histone modifications tremendously multiply the spectrum of potential regulatory functions. Epigenetic networks are critically involved in the establishment and functionality of neuronal circuits that are composed of gamma-aminobutyric acid (GABA)-positive inhibitory interneurons and excitatory principal neurons in the cerebral cortex. We recently reported a crucial role of the DNA methyltransferase 1 (DNMT1) during the migration of immature POA-derived cortical interneurons by promoting the migratory morphology through repression of Pak6. However, the DNMT1-dependent regulation of Pak6 expression appeared to occur independently of direct DNA methylation. Here, we show that in addition to its DNA methylating activity, DNMT1 can act on gene transcription by modulating permissive H3K4 and repressive H3K27 trimethylation in developing inhibitory interneurons, similar to what was found in other cell types. In particular, the transcriptional control of Pak6, interactions of DNMT1 with the Polycomb-repressor complex 2 (PCR2) core enzyme EZH2, mediating repressive H3K27 trimethylations at regulatory regions of the Pak6 gene locus. Similar to what was observed upon Dnmt1 depletion, inhibition of EZH2 caused elevated Pak6 expression levels accompanied by increased morphological complexity, which was rescued by siRNA-mediated downregulation of Pak6 expression. Together, our data emphasise the relevance of DNMT1-dependent crosstalk with histone tail methylation for transcriptional control of genes like Pak6 required for proper cortical interneuron migration.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Código das Histonas , Interneurônios/metabolismo , Quinases Ativadas por p21/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , DNA (Citosina-5-)-Metiltransferase 1/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Interneurônios/citologia , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese , Quinases Ativadas por p21/genética
12.
J Exp Neurosci ; 12: 1179069518760783, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29551912

RESUMO

The correct establishment of inhibitory circuits is crucial for cortical functionality and defects during the development of γ-aminobutyric acid-expressing cortical interneurons contribute to the pathophysiology of psychiatric disorders. A critical developmental step is the migration of cortical interneurons from their site of origin within the subpallium to the cerebral cortex, orchestrated by intrinsic and extrinsic signals. In addition to genetic networks, epigenetic mechanisms such as DNA methylation by DNA methyltransferases (DNMTs) are suggested to drive stage-specific gene expression underlying developmental processes. The mosaic structure of the interneuron generating domains producing a variety of interneurons for diverse destinations complicates research on regulatory instances of cortical interneuron migration. To this end, we performed single-cell transcriptome analysis revealing Dnmt1 expression in subsets of migrating interneurons. We found that DNMT1 preserves the migratory morphology in part through transcriptional control over Pak6 that promotes neurite complexity in postmigratory cells. In addition, we identified Ccdc184, a gene of unknown function, to be highly expressed in postmitotic interneurons. Single-cell mRNA sequencing revealed a positive correlation of Ccdc184 with cell adhesion-associated genes pointing to potential implications of CCDC184 in processes relying on cell-cell adhesion-like migration or morphological differentiation of interneurons that deserves further investigations.

13.
Cereb Cortex ; 27(12): 5696-5714, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29117290

RESUMO

The proliferative niches in the subpallium generate a rich cellular variety fated for diverse telencephalic regions. The embryonic preoptic area (POA) represents one of these domains giving rise to the pool of cortical GABAergic interneurons and glial cells, in addition to striatal and residual POA cells. The migration from sites of origin within the subpallium to the distant targets like the cerebral cortex, accomplished by the adoption and maintenance of a particular migratory morphology, is a critical step during interneuron development. To identify factors orchestrating this process, we performed single-cell transcriptome analysis and detected Dnmt1 expression in murine migratory GABAergic POA-derived cells. Deletion of Dnmt1 in postmitotic immature cells of the POA caused defective migration and severely diminished adult cortical interneuron numbers. We found that DNA methyltransferase 1 (DNMT1) preserves the migratory shape in part through negative regulation of Pak6, which stimulates neuritogenesis at postmigratory stages. Our data underline the importance of DNMT1 for the migration of POA-derived cells including cortical interneurons.


Assuntos
Movimento Celular/fisiologia , Córtex Cerebral/embriologia , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Interneurônios/enzimologia , Células-Tronco Neurais/enzimologia , Área Pré-Óptica/embriologia , Animais , Animais Recém-Nascidos , Contagem de Células , Sobrevivência Celular/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/enzimologia , Metilação de DNA , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/enzimologia , Interneurônios/citologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neurais/citologia , Crescimento Neuronal/fisiologia , Área Pré-Óptica/citologia , Área Pré-Óptica/enzimologia , Técnicas de Cultura de Tecidos , Transcriptoma , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo
14.
Development ; 142(1): 140-50, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25480914

RESUMO

The phenotype of excitatory cerebral cortex neurons is specified at the progenitor level, orchestrated by various intrinsic and extrinsic factors. Here, we provide evidence for a subcortical contribution to cortical progenitor regulation by thalamic axons via ephrin A5-EphA4 interactions. Ephrin A5 is expressed by thalamic axons and represents a high-affinity ligand for EphA4 receptors detected in cortical precursors. Recombinant ephrin A5-Fc protein, as well as ephrin A ligand-expressing, thalamic axons affect the output of cortical progenitor division in vitro. Ephrin A5-deficient mice show an altered division mode of radial glial cells (RGCs) accompanied by increased numbers of intermediate progenitor cells (IPCs) and an elevated neuronal production for the deep cortical layers at E13.5. In turn, at E16.5 the pool of IPCs is diminished, accompanied by reduced rates of generated neurons destined for the upper cortical layers. This correlates with extended infragranular layers at the expense of superficial cortical layers in adult ephrin A5-deficient and EphA4-deficient mice. We suggest that ephrin A5 ligands imported by invading thalamic axons interact with EphA4-expressing RGCs, thereby contributing to the fine-tuning of IPC generation and thus the proper neuronal output for cortical layers.


Assuntos
Córtex Cerebral/citologia , Efrina-A5/metabolismo , Neurônios Aferentes/citologia , Neurônios Aferentes/metabolismo , Receptor EphA4/metabolismo , Células-Tronco/metabolismo , Tálamo/citologia , Animais , Axônios/metabolismo , Contagem de Células , Divisão Celular , Embrião de Mamíferos/citologia , Células Ependimogliais/citologia , Células Ependimogliais/metabolismo , Efrina-A5/deficiência , Ligantes , Camundongos Endogâmicos C57BL , Neurogênese , Receptor EphA4/deficiência , Transdução de Sinais , Células-Tronco/citologia , Tálamo/embriologia , Tálamo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA