RESUMO
The rapid growth in the technological advancements of the smartphone industry has classified contemporary smartphones as a low-cost and high quality indoor positioning tools requiring no additional infrastructure or equipment. In recent years, the fine time measurement (FTM) protocol, achieved through the Wi-Fi round trip time (RTT) observable, available in the most recent models, has gained the interest of many research teams worldwide, especially those concerned with indoor localization problems. However, as the Wi-Fi RTT technology is still new, there is a limited number of studies addressing its potential and limitations relative to the positioning problem. This paper presents an investigation and performance evaluation of Wi-Fi RTT capability with a focus on range quality assessment. A set of experimental tests was carried out, considering 1D and 2D space, operating different smartphone devices at various operational settings and observation conditions. Furthermore, in order to address device-dependent and other type of biases in the raw ranges, alternative correction models were developed and tested. The obtained results indicate that Wi-Fi RTT is a promising technology capable of achieving a meter-level accuracy for ranges both in line-of-sight (LOS) and non-line-of-sight (NLOS) conditions, subject to suitable corrections identification and adaptation. From 1D ranging tests, an average mean absolute error (MAE) of 0.85 m and 1.24 m is achieved, for LOS and NLOS conditions, respectively, for 80% of the validation sample data. In 2D-space ranging tests, an average root mean square error (RMSE) of 1.1m is accomplished across the different devices. Furthermore, the analysis has shown that the selection of the bandwidth and the initiator-responder pair are crucial for the correction model selection, whilst knowledge of the type of operating environment (LOS and/or NLOS) can further contribute to Wi-Fi RTT range performance enhancement.
RESUMO
Cooperative positioning (CP) utilises information sharing among multiple nodes to enable positioning in Global Navigation Satellite System (GNSS)-denied environments. This paper reports the performance of a CP system for pedestrians using Ultra-Wide Band (UWB) technology inGNSS-denied environments. This data set was collected as part of a benchmarking measurementcampaign carried out at the Ohio State University in October 2017. Pedestrians were equippedwith a variety of sensors, including two different UWB systems, on a specially designed helmetserving as a mobile multi-sensor platform for CP. Different users were walking in stop-and-go modealong trajectories with predefined checkpoints and under various challenging environments. Inthe developed CP network, both Peer-to-Infrastructure (P2I) and Peer-to-Peer (P2P) measurementsare used for positioning of the pedestrians. It is realised that the proposed system can achievedecimetre-level accuracies (on average, around 20 cm) in the complete absence of GNSS signals,provided that the measurements from infrastructure nodes are available and the network geometryis good. In the absence of these good conditions, the results show that the average accuracydegrades to meter level. Further, it is experimentally demonstrated that inclusion of P2P cooperativerange observations further enhances the positioning accuracy and, in extreme cases when only oneinfrastructure measurement is available, P2P CP may reduce positioning errors by up to 95%. Thecomplete test setup, the methodology for development, and data collection are discussed in thispaper. In the next version of this system, additional observations such as theWi-Fi, camera, and othersignals of opportunity will be included.
RESUMO
With the rapid growth in smartphone technologies and improvement in their navigation sensors, an increasing amount of location information is now available, opening the road to the provision of new Intelligent Transportation System (ITS) services. Current smartphone devices embody miniaturized Global Navigation Satellite System (GNSS), Inertial Measurement Unit (IMU) and other sensors capable of providing user position, velocity and attitude. However, it is hard to characterize their actual positioning and navigation performance capabilities due to the disparate sensor and software technologies adopted among manufacturers and the high influence of environmental conditions, and therefore, a unified certification process is missing. This paper presents the analysis results obtained from the assessment of two modern smartphones regarding their positioning accuracy (i.e., precision and trueness) capabilities (i.e., potential and limitations) based on a practical but rigorous methodological approach. Our investigation relies on the results of several vehicle tracking (i.e., cruising and maneuvering) tests realized through comparing smartphone obtained trajectories and kinematic parameters to those derived using a high-end GNSS/IMU system and advanced filtering techniques. Performance testing is undertaken for the HTC One S (Android) and iPhone 5s (iOS). Our findings indicate that the deviation of the smartphone locations from ground truth (trueness) deteriorates by a factor of two in obscured environments compared to those derived in open sky conditions. Moreover, it appears that iPhone 5s produces relatively smaller and less dispersed error values compared to those computed for HTC One S. Also, the navigation solution of the HTC One S appears to adapt faster to changes in environmental conditions, suggesting a somewhat different data filtering approach for the iPhone 5s. Testing the accuracy of the accelerometer and gyroscope sensors for a number of maneuvering (speeding, turning, etc.,) events reveals high consistency between smartphones, whereas the small deviations from ground truth verify their high potential even for critical ITS safety applications.