Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39124920

RESUMO

Here, we report for the first time on the mechanisms of action of the essential oil of Ruta graveolens (REO) against the plant pathogen Colletotrichum gloeosporioides. In particular, the presence of REO drastically affected the morphology of hyphae by inducing changes in the cytoplasmic membrane, such as depolarization and changes in the fatty acid profile where straight-chain fatty acids (SCFAs) increased by up to 92.1%. In addition, REO induced changes in fungal metabolism and triggered apoptosis-like responses to cell death, such as DNA fragmentation and the accumulation of reactive oxygen species (ROS). The production of essential enzymes involved in fungal metabolism, such as acid phosphatase, ß-galactosidase, ß-glucosidase, and N-acetyl-ß-glucosaminidase, was significantly reduced in the presence of REO. In addition, C. gloeosporioides activated naphthol-As-BI phosphohydrolase as a mechanism of response to REO stress. The data obtained here have shown that the essential oil of Ruta graveolens has a strong antifungal effect on C. gloeosporioides. Therefore, it has the potential to be used as a surface disinfectant and as a viable replacement for fungicides commonly used to treat anthracnose in the postharvest testing phase.


Assuntos
Antifúngicos , Colletotrichum , Óleos Voláteis , Espécies Reativas de Oxigênio , Ruta , Colletotrichum/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Ruta/química , Antifúngicos/farmacologia , Antifúngicos/química , Espécies Reativas de Oxigênio/metabolismo , Doenças das Plantas/microbiologia , Testes de Sensibilidade Microbiana , Fragmentação do DNA/efeitos dos fármacos
2.
J Fungi (Basel) ; 9(6)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37367558

RESUMO

Fruits and vegetables are constantly affected by postharvest diseases, of which anthracnose is one of the most severe and is caused by diverse Colletotrichum species, mainly C. gloeosporioides. In the last few decades, chemical fungicides have been the primary approach to anthracnose control. However, recent trends and regulations have sought to limit the use of these substances. Greener management includes a group of sustainable alternatives that use natural substances and microorganisms to control postharvest fungi. This comprehensive review of contemporary research presents various sustainable alternatives to C. gloeosporioides postharvest control in vitro and in situ, ranging from the use of biopolymers, essential oils, and antagonistic microorganisms to cultivar resistance. Strategies such as encapsulation, biofilms, coatings, compounds secreted, antibiotics, and lytic enzyme production by microorganisms are revised. Finally, the potential effects of climate change on C. gloeosporioides and anthracnose disease are explored. Greener management can provide a possible replacement for the conventional approach of using chemical fungicides for anthracnose postharvest control. It presents diverse methodologies that are not mutually exclusive and can be in tune with the needs and interests of new consumers and the environment. Overall, developing or using these alternatives has strong potential for improving sustainability and addressing the challenges generated by climate change.

3.
Foods ; 11(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35053942

RESUMO

This research aimed to evaluate the impact of atmospheric cold plasma (ACP) treatment on the fungal spores naturally present in sundried tomatoes, as well as their influence on the physico-chemical properties and antioxidant activity. ACP was performed with a Surface Dielectric Barrier Discharge (SDBD), applying 6 kV at 23 kHz and exposure times up to 30 min. The results showed a significant reduction of mesophilic aerobic bacteria population and of filamentous fungi after the longer ACP exposure. In particular, the effect of the treatment was assessed on Aspergillus rugulovalvus (as sensible strain) and Aspergillus niger (as resistant strain). The germination of the spores was observed to be reliant on the species, with nearly 88% and 32% of non-germinated spores for A. rugulovalvus and A. niger, respectively. Fluorescence probes revealed that ACP affects spore viability promoting strong damage to the wall and cellular membrane. For the first time, the sporicidal effect of ACP against A. rugulovalvus is reported. Physicochemical parameters of sundried tomatoes such as pH and water activity (aw) were not affected by the ACP treatment; on the contrary, the antioxidant activity was not affected while the lycopene content was significantly increased with the increase in ACP exposure time (p ≤ 0.05) probably due to increased extractability.

4.
Front Plant Sci ; 12: 765806, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858463

RESUMO

Anthracnose of papaya (Carica papaya L.) caused by the fungus Colletotrichum spp. is one of the most economically important postharvest diseases. Coating with chitosan (CS) and Ruta graveolens essential oil (REO) might represent a novel eco-friendly method to prevent postharvest anthracnose infection. These compounds show both antimicrobial and eliciting activities, although the molecular mechanisms in papaya have not been investigated to date. In this study, the effectiveness of CS and REO alone and combined (CS-REO) on postharvest anthracnose of papaya fruit during storage were investigated, along with the expression of selected genes involved in plant defense mechanisms. Anthracnose incidence was reduced with CS, REO, and CS-REO emulsions after 9 days storage at 25°C, by 8, 21, and 37%, respectively, with disease severity reduced by 22, 29, and 44%, respectively. Thus, McKinney's decay index was reduced by 22, 30, and 44%, respectively. A protocol based on reverse transcription quantitative real-time PCR (RT-qPCR) was validated for 17 papaya target genes linked to signaling pathways that regulate plant defense, pathogenesis-related protein, cell wall-degrading enzymes, oxidative stress, abiotic stress, and the phenylpropanoid pathway. CS induced gene upregulation mainly at 6 h posttreatment (hpt) and 48 hpt, while REO induced the highest upregulation at 0.5 hpt, which then decreased over time. Furthermore, CS-REO treatment delayed gene upregulation by REO alone, from 0.5 to 6 hpt, and kept that longer over time. This study suggests that CS stabilizes the volatile and/or hydrophobic substances of highly reactive essential oils. The additive effects of CS and REO were able to reduce postharvest decay and affect gene expression in papaya fruit.

5.
J Fungi (Basel) ; 7(5)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069001

RESUMO

Drug resistance in antifungal therapy, a problem unknown until a few years ago, is increasingly assuming importance especially in immunosuppressed patients and patients receiving chemotherapy and radiotherapy. In the past years, the use of essential oils as an approach to improve the effectiveness of antifungal agents and to reduce antifungal resistance levels has been proposed. Our research aimed to evaluate the antifungal activity of Colombian rue, Ruta graveolens, essential oil (REO) against clinical strains of Candida albicans, Candida parapsilopsis, Candida glabrata, and Candida tropicalis. Data obtained showed that C. tropicalis and C. albicans were the most sensitive strains showing minimum inhibitory concentrations (MIC) of 4.1 and 8.2 µg/mL of REO. Time-kill kinetics assay demonstrated that REO showed a fungicidal effect against C. tropicalis and a fungistatic effect against C. albicans. In addition, an amount of 40% of the biofilm formed by C. albicans was eradicated using 8.2 µg/mL of REO after 1 h of exposure. The synergistic effect of REO together with some antifungal compounds was also investigated. Fractional inhibitory concentration index (FICI) showed synergic effects of REO combined with amphotericin B. REO Lead a disruption in the cellular membrane integrity, consequently resulting in increased intracellular leakage of the macromolecules, thus confirming that the plasma membrane is a target of the mode of action of REO against C. albicans and C. tropicalis.

6.
Molecules ; 26(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573272

RESUMO

Pears (Pyrus communis L.) cv. Packham's Triumph are very traditional for human consumption, but pear is a highly perishable climacteric fruit with a short shelf-life affected by several diseases with a microbial origin. In this study, a protective effect on the quality properties of pears was evidenced after the surface application of chitosan-Ruta graveolens essential oil coatings (CS + RGEO) in four different concentrations (0, 0.5, 1.0 and 1.5 %, v/v) during 21 days of storage under 18 °C. After 21 days of treatment, a weight loss reduction of 10% (from 40.2 ± 5.3 to 20.3 ± 3.9) compared to the uncoated pears was evident with CS + RGEO 0.5%. All the fruits' physical-chemical properties evidenced a protective effect of the coatings. The maturity index increased for all the treatments. However, the pears with CS + RGEO 1.5% were lower (70.21) than the uncoated fruits (98.96). The loss of firmness for the uncoated samples was higher compared to the coated samples. The pears' most excellent mechanical resistance was obtained with CS + RGEO 0.5% after 21 days of storage, both for compression resistance (7.42 kPa) and force (22.7 N). Microbiological studies demonstrated the protective power of the coatings. Aerobic mesophilic bacteria and molds were significantly reduced (in 3 Log CFU/g compared to control) using 15 µL/mL of RGEO, without affecting consumer perception. The results presented in this study showed that CS + RGEO coatings are promising in the post-harvest treatment of pears.


Assuntos
Quitosana/química , Conservação de Alimentos/métodos , Óleos Voláteis/farmacologia , Pyrus/química , Quitosana/farmacologia , Resposta ao Choque Frio/efeitos dos fármacos , Frutas/química , Fungos/efeitos dos fármacos , Humanos , Óleos Voláteis/química , Óleos de Plantas/química , Pyrus/efeitos dos fármacos , Pyrus/microbiologia , Ruta/química , Temperatura
7.
Polymers (Basel) ; 12(8)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823746

RESUMO

The tomato (Solanum lycopersicum L.) is one of the many essential vegetables around the world due to its nutritive content and attractive flavor. However, its short shelf-life and postharvest losses affect its marketing. In this study, the effects of chitosan-Ruta graveolens (CS + RGEO) essential oil coatings on the postharvest quality of Tomato var. "chonto" stored at low temperature (4 °C) for 12 days are reported. The film-forming dispersions (FFD) were eco-friendly synthesized and presented low viscosities (between 0.126 and 0.029 Pa s), small particle sizes (between 1.29 and 1.56 µm), and low densities. The mature index (12.65% for uncoated fruits and 10.21% for F4 coated tomatoes), weight loss (29.8% for F1 and 16.7% for F5 coated tomatoes), and decay index (3.0 for uncoated and 1.0 for F5 coated tomatoes) were significantly different, indicating a preservative effect on the quality of the tomato. Moreover, aerobic mesophilic bacteria were significantly reduced (in five Log CFU/g compared to control) by using 15 µL/mL of RGEO. The coatings, including 10 and 15 µL/mL of RGEO, completely inhibited the mold and yeast growth on tomato surfaces without negatively affecting the consumer acceptation, as the sensorial analysis demonstrated. The results presented in this study show that CS + RGEO coatings are promising in the postharvest treatment of tomato var. "chonto".

8.
Int J Food Microbiol ; 326: 108649, 2020 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-32402917

RESUMO

In this study we assessed the efficacy of chitosan (CHI) (2%) emulsion added with Ruta graveolens L. essential oil (REO) at different concentrations (0.5%, 1.0% and 1.5%) to control C. gloesporioides grows both "in situ" and "in vitro" in papaya Maradol (Carica papaya L.). In vitro studies showed a decrease on fungal growth (mycelia diameter) with the increase of REO concentration, while 0.5% of REO induce a reduction of 56.42%, REO at 1.0% and 1.5% induced a reduction of 97%. Microscopic analysis showed irreversible deleterious morphological and ultrastructural alterations as well as changes in conidia morphology, and conidia germination inhibition up to 90%. Among the most abundant REO constituents, 2-Nonanol showed strong antifungal activity followed by 2-Undecanone, Benzyl acetate, 2-Nonanone, 2-Tridecanone and 2-Dodecanone. Studies "in situ" on papaya fruit during 12 days at 20 °C, showed a reduction of the C. gloesporioides lesion expansion by 50% using CHI-REO 0.5% emulsions and by 100% with treatments of CHI-REO 1.0 and 1.5%, in addition the emulsions were efficacious to reduce the fruit surface microbiota. On the other hand, physicochemical analysis of the papaya fruits demonstrated that CHI-REO emulsions treatment delayed papaya ripening without affecting the organoleptic characteristics. All these results demonstrated for the first time the application of coatings CHI-REO as a postharvest treatment for the control of anthracnose on papaya fruit.


Assuntos
Antifúngicos/farmacologia , Carica/microbiologia , Quitosana/farmacologia , Colletotrichum/efeitos dos fármacos , Óleos Voláteis/farmacologia , Ruta/metabolismo , Emulsões , Frutas/microbiologia , Micélio/crescimento & desenvolvimento , Esporos Fúngicos/crescimento & desenvolvimento
9.
Biomolecules ; 9(9)2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443462

RESUMO

Guava is a fruit appreciated worldwide for its high content of bioactive compounds. However, it is considered a highly perishable fruit, generally attacked by pathogenic species such as the fungi Colletotrichum gloeosporioides, which causes anthracnosis. To diminish the losses caused by pathogenic fungi, coatings of chitosan (CS) with Ruta graveolens essential oil (RGEO) in different concentrations (0.5, 1.0, 1.5% v/v) were applied in situ and their effects on the physical properties and microbiological quality of the guavas were studied. The CS+RGEO coated fruits exhibited better physicochemical behavior and lower microbiological decay as compared to the uncoated guavas, demonstrating the effectiveness of the coatings, especially those with 1.5% of RGEO content. All the fruits coated had greater acceptance and quality than the controls, being more those with essential oil incorporation. In situ investigation of C. gloesporioides infection of guavas demonstrated that the CS+RGEO coated guavas showed a high percentage of inhibition in the development of anthracnose lesions. In the present investigation, an alternative method has been proposed to extend the stability of the guavas fruit up to 12 days with application in the food industry.


Assuntos
Quitosana/química , Quitosana/farmacologia , Colletotrichum/efeitos dos fármacos , Armazenamento de Medicamentos , Psidium/química , Ruta/química , Temperatura , Antifúngicos/química , Antifúngicos/farmacologia , Fenômenos Químicos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Indústria Alimentícia , Concentração de Íons de Hidrogênio , Fenômenos Mecânicos , Óleos Voláteis/química , Sensação , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA