Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Biomed Pharmacother ; 175: 116676, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38772152

RESUMO

The molecular nanomachine, human DNA topoisomerase IIα, plays a crucial role in replication, transcription, and recombination by catalyzing topological changes in the DNA, rendering it an optimal target for cancer chemotherapy. Current clinical topoisomerase II poisons often cause secondary tumors as side effects due to the accumulation of double-strand breaks in the DNA, spurring the development of catalytic inhibitors. Here, we used a dynamic pharmacophore approach to develop catalytic inhibitors targeting the ATP binding site of human DNA topoisomerase IIα. Our screening of a library of nature-inspired compounds led to the discovery of a class of 3-(imidazol-2-yl) morpholines as potent catalytic inhibitors that bind to the ATPase domain. Further experimental and computational studies identified hit compound 17, which exhibited selectivity against the human DNA topoisomerase IIα versus human protein kinases, cytotoxicity against several human cancer cells, and did not induce DNA double-strand breaks, making it distinct from clinical topoisomerase II poisons. This study integrates an innovative natural product-inspired chemistry and successful implementation of a molecular design strategy that incorporates a dynamic component of ligand-target molecular recognition, with comprehensive experimental characterization leading to hit compounds with potential impact on the development of more efficient chemotherapies.

2.
Int J Biol Macromol ; 269(Pt 2): 131991, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38714283

RESUMO

Type IIA DNA topoisomerases are molecular nanomachines responsible for controlling topological states of DNA molecules. Here, we explore the dynamic landscape of yeast topoisomerase IIA during key stages of its catalytic cycle, focusing in particular on the events preceding the passage of the T-segment. To this end, we generated six configurations of fully catalytic yeast topo IIA, strategically inserted a T-segment into the N-gate in relevant configurations, and performed all-atom simulations. The essential motion of topo IIA protein dimer was characterized by rotational gyrating-like movement together with sliding motion within the DNA-gate. Both appear to be inherent properties of the enzyme and an inbuilt feature that allows passage of the T-segment through the cleaved G-segment. Coupled dynamics of the N-gate and DNA-gate residues may be particularly important for controlled and smooth passage of the T-segment and consequently the prevention of DNA double-strand breaks. QTK loop residue Lys367, which interacts with ATP and ADP molecules, is involved in regulating the size and stability of the N-gate. The unveiled features of the simulated configurations provide insights into the catalytic cycle of type IIA topoisomerases and elucidate the molecular choreography governing their ability to modulate the topological states of DNA topology.


Assuntos
DNA Topoisomerases Tipo II , Simulação de Dinâmica Molecular , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo II/química , DNA/química , DNA/metabolismo , Saccharomyces cerevisiae/enzimologia , Multimerização Proteica , Conformação de Ácido Nucleico
3.
J Med Chem ; 66(18): 12776-12811, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37708384

RESUMO

Hypoxia-inducible factor-1α (HIF-1α) constitutes the principal mediator of cellular adaptation to hypoxia in humans. The HIF-1α protein level and activity are tightly regulated by the ubiquitin E3 ligase von Hippel-Lindau (VHL). Here, we performed a structure-guided and bioactivity-driven design of new VHL inhibitors. Our iterative and combinatorial strategy focused on chemical variability at the phenylene unit and encompassed further points of diversity. The exploitation of tailored phenylene fragments and the stereoselective installation of the benzylic methyl group provided potent VHL ligands. Three high-resolution structures of VHL-ligand complexes were determined, and bioactive conformations of these ligands were explored. The most potent inhibitor (30) exhibited dissociation constants lower than 40 nM, independently determined by fluorescence polarization and surface plasmon resonance and an enhanced cellular potency, as evidenced by its superior ability to induce HIF-1α transcriptional activity. Our work is anticipated to inspire future efforts toward HIF-1α stabilizers and new ligands for proteolysis-targeting chimera (PROTAC) degraders.


Assuntos
Ubiquitina-Proteína Ligases , Proteína Supressora de Tumor Von Hippel-Lindau , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Ligantes , Subunidade alfa do Fator 1 Induzível por Hipóxia , Ubiquitina/metabolismo , Hipóxia
4.
Comput Struct Biotechnol J ; 21: 3746-3759, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37602233

RESUMO

Type IIA DNA topoisomerases are complex molecular nanomachines that manage topological states of the DNA molecule in the cell and play a crucial role in cellular processes such as cell division and transcription. They are also established targets of cancer chemotherapy. Starting from the available crystal structure of a fully catalytic topoisomerase IIA homodimer from Saccharomyces cerevisiae, we constructed three states of this molecular motor primarily changing the configurations of the DNA segment bound in the DNA gate and performed µs-long all-atom molecular simulations. A comprehensive analysis revealed a sliding motion within the DNA gate and a teamwork between the N-gate and DNA gate that may be associated with the necessary molecular events that allow passage of the T-segment of DNA. The observed movement of the ATPase dimer relative to the DNA domain was reflected in different interaction patterns between the K-loops of the transducer domain and the B-A-B form of the bound DNA. Based on the obtained results, we mapped simulated configurations to the structures in the proposed catalytic cycle through which type IIA topoisomerases exert their function and discussed the possible transition events. The results extend our understanding of the mechanism of action of type IIA topoisomerases and provide an atomistic interpretation of some of the observed features of these molecular motors.

5.
J Chem Inf Model ; 63(11): 3486-3499, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37207294

RESUMO

Natural killer (NK) cells play an important role in the innate immune response against tumors and various pathogens such as viruses and bacteria. Their function is controlled by a wide array of activating and inhibitory receptors, which are expressed on their cell surface. Among them is a dimeric NKG2A/CD94 inhibitory transmembrane (TM) receptor which specifically binds to the non-classical MHC I molecule HLA-E, which is often overexpressed on the surface of senescent and tumor cells. Using the Alphafold 2 artificial intelligence system, we constructed the missing segments of the NKG2A/CD94 receptor and generated its complete 3D structure comprising extracellular (EC), TM, and intracellular regions, which served as a starting point for the multi-microsecond all-atom molecular dynamics simulations of the receptor with and without the bound HLA-E ligand and its nonameric peptide. The simulated models revealed that an intricate interplay of events is taking place between the EC and TM regions ultimately affecting the intracellular immunoreceptor tyrosine-based inhibition motif (ITIM) regions that host the point at which the signal is transmitted further down the inhibitory signaling cascade. Signal transduction through the lipid bilayer was also coupled with the changes in the relative orientation of the NKG2A/CD94 TM helices in response to linker reorganization, mediated by fine-tuned interactions in the EC region of the receptor, taking place after HLA-E binding. This research provides atomistic details of the cells' protection mechanism against NK cells and broadens the knowledge regarding the TM signaling of ITIM-bearing receptors.


Assuntos
Subfamília C de Receptores Semelhantes a Lectina de Células NK , Receptores Imunológicos , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Receptores de Células Matadoras Naturais/metabolismo , Receptores Imunológicos/química , Receptores Imunológicos/metabolismo , Ligantes , Inteligência Artificial , Antígenos de Histocompatibilidade Classe I/metabolismo , Transdução de Sinais , Proteínas de Transporte/metabolismo , Antígenos HLA-E
6.
Pharmaceuticals (Basel) ; 16(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36986441

RESUMO

Phenotypic screening of α-substituted thiocarbohydrazones revealed promising activity of 1,5-bis(salicylidene)thiocarbohydrazide against leukemia and breast cancer cells. Supplementary cell-based studies indicated an impairment of DNA replication via the ROS-independent pathway. The structural similarity of α-substituted thiocarbohydrazone to previously published thiosemicarbazone catalytic inhibitors targeting the ATP-binding site of human DNA topoisomerase IIα prompted us to investigate the inhibition activity on this target. Thiocarbohydrazone acted as a catalytic inhibitor and did not intercalate the DNA molecule, which validated their engagement with this cancer target. A comprehensive computational assessment of molecular recognition for a selected thiosemicarbazone and thiocarbohydrazone provided useful information for further optimization of this discovered lead compound for chemotherapeutic anticancer drug discovery.

7.
Eur J Med Chem ; 247: 115048, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36586299

RESUMO

Alongside reversible butyrylcholinesterase inhibitors, a plethora of covalent butyrylcholinesterase inhibitors have been reported in the literature, typically pseudo-irreversible carbamates. For these latter, however, most cases lack full confirmation of their covalent mode of action. Additionally, the available reports regarding the structure-activity relationships of the O-arylcarbamate warhead are incomplete. Therefore, a follow-up on a series of pseudo-irreversible covalent carbamate human butyrylcholinesterase inhibitors and the structure-activity relationships of the N-dialkyl O-arylcarbamate warhead are presented in this study. The covalent mechanism of binding was tested by IC50 time-dependency profiles, and sequentially and increasingly confirmed by kinetic analysis, whole protein LC-MS, and crystallographic analysis. Computational studies provided valuable insights into steric constraints and identified problematic, bulky carbamate warheads that cannot reach and carbamoylate the catalytic Ser198. Quantum mechanical calculations provided further evidence that steric effects appear to be a key factor in determining the covalent binding behaviour of these carbamate cholinesterase inhibitors and their duration of action. Additionally, the introduction of a clickable terminal alkyne moiety into one of the carbamate N-substituents and in situ derivatisation with azide-containing fluorophore enabled fluorescent labelling of plasma human butyrylcholinesterase. This proof-of-concept study highlights the potential of this novel approach and for these compounds to be further developed as clickable molecular probes for investigating tissue localisation and activity of cholinesterases.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Humanos , Butirilcolinesterase/metabolismo , Cinética , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Carbamatos/farmacologia , Carbamatos/química
8.
Molecules ; 27(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36235246

RESUMO

Monoamine oxidases (MAOs) are an important group of enzymes involved in the degradation of neurotransmitters and their imbalanced mode of action may lead to the development of various neuropsychiatric or neurodegenerative disorders. In this work, we report the results of an in-depth computational study in which we performed a static and a dynamic analysis of a series of substituted ß-carboline natural products, found mainly in roasted coffee and tobacco smoke, that bind to the active site of the MAO-A isoform. By applying molecular docking in conjunction with structure-based pharmacophores and molecular dynamics simulations coupled with dynamic pharmacophores, we extensively investigated the geometric aspects of MAO-A binding. To gain insight into the energetics of binding, we used the linear interaction energy (LIE) method and determined the key anchors that allow productive ß-carboline binding to MAO-A. The results presented herein could be applied in the rational structure-based design and optimization of ß-carbolines towards preclinical candidates that would target the MAO-A enzyme and would be applicable especially in the treatment of mental disorders such as depression.


Assuntos
Inibidores da Monoaminoxidase , Poluição por Fumaça de Tabaco , Carbolinas/farmacologia , Café , Humanos , Simulação de Acoplamento Molecular , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/farmacologia , Relação Estrutura-Atividade
9.
J Chem Inf Model ; 62(16): 3896-3909, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35948041

RESUMO

Human DNA topoisomerase IIα is a biological nanomachine that regulates the topological changes of the DNA molecule and is considered a prime target for anticancer drugs. Despite intensive research, many atomic details about its mechanism of action remain unknown. We investigated the ATPase domain, a segment of the human DNA topoisomerase IIα, using all-atom molecular simulations, multiscale quantum mechanics/molecular mechanics (QM/MM) calculations, and a point mutation study. The results suggested that the binding of ATP affects the overall dynamics of the ATPase dimer. Reaction modeling revealed that ATP hydrolysis favors the dissociative substrate-assisted reaction mechanism with the catalytic Glu87 serving to properly position and polarize the lytic water molecule. The point mutation study complemented our computational results, demonstrating that Lys378, part of the important QTK loop, acts as a stabilizing residue. The work aims to pave the way to a deeper understanding of these important molecular motors and to advance the development of new therapeutics.


Assuntos
Antígenos de Neoplasias , DNA Topoisomerases Tipo II , Adenosina Trifosfatases/química , Trifosfato de Adenosina/metabolismo , Antígenos de Neoplasias/metabolismo , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Hidrólise
10.
Front Pharmacol ; 13: 925427, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991867

RESUMO

MHC class I antigen E (HLA-E), a ligand for the inhibitory NKG2A/CD94 receptor of the immune system, is responsible for evading the immune surveillance in several settings, including senescent cell accumulation and tumor persistence. The formation of this ligand-receptor interaction promotes the inhibition of the cytolytic action of immune system natural killer (NK) cells and CD8+ T-cells expressing this receptor. The final outcome of the HLA-E/NKG2A/CD94 interaction on target cells is also highly dependent on the identity of the nonameric peptide incorporated into the HLA-E ligand. To better understand the role played by a nonameric peptide in these immune complexes, we performed a series of multi-microsecond all-atom molecular dynamics simulations. We generated natural and alternative variants of the nonameric peptide bound to the HLA-E ligand alone or in the HLA-E/NKG2A/CD94 complexes. A systematic study of molecular recognition between HLA-E and peptides led to the development of new variants that differ at the strategic 6th position (P6) of the peptide and have favorable in silico properties comparable to those of natural binding peptides. Further examination of a selected subset of peptides in full complexes revealed a new variant that, according to our previously derived atomistic model, can interfere with the signal transduction via HLA-E/NKG2A/CD94 and thus prevent the target cell from evading immune clearance by NK and CD8+ T-cells. These simulations provide an atomistic picture of how a small change in amino acid sequence can lead to a profound effect on binding and molecular recognition. Furthermore, our study also provides new data on the peptide interaction motifs as well as the energetic and conformational properties of the binding interface, laying the structure-based foundation for future development of potential therapeutic peptides, peptidomimetics, or even small molecules that would bind to the HLA-E ligand and abrogate NKG2A/CD94 recognition. Such external intervention would be useful in the emerging field of targeting senescent cells in a variety of age-related diseases, as well as in novel cancer immunotherapies.

11.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35631364

RESUMO

The emergence of SARS-CoV-2, responsible for the global COVID-19 pandemic, requires the rapid development of novel antiviral drugs that would contribute to an effective treatment alongside vaccines. Drug repurposing and development of new molecules targeting numerous viral targets have already led to promising drug candidates. To this end, versatile molecular scaffolds with high functionalization capabilities play a key role. Starting with the clinically used conformationally flexible HIV-1 protease inhibitors that inhibit replication of SARS-CoV-2 and bind major protease 3CLpro, we designed and synthesized a series of rigid bicyclo[2.2.2]octenes fused to N-substituted succinimides to test whether this core scaffold could support the development of non-covalent 3CLpro inhibitors. Inhibition assays confirmed that some compounds can inhibit the SARS-CoV-2 main protease; the most promising compound 11a inhibited 3CLpro in micromolar range (IC50 = 102.2 µM). Molecular simulations of the target-ligand complex in conjunction with dynophore analyses and endpoint free energy calculations provide additional insight and first recommendations for future optimization. The fused bicyclo[2.2.2]octenes can be used as a new potential starting point in the development of non-covalent SARS-CoV-2 3CLpro protease inhibitors and the study also substantiates the potential of this versatile scaffold for the development of biologically active molecules.

12.
J Biomol Struct Dyn ; 40(4): 1671-1691, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33047663

RESUMO

Recently, we designed and synthesized a subnanomolar, reversible, dual-binding site acetylcholinesterase (AChE) inhibitor which consists of the tacrine and aroylacrylic acid phenylamide moieties, mutually linked by eight methylene units. To further investigate the process of the molecular recognition between the AChE and its inhibitor, we performed six unconstrained molecular dynamics (MD) simulations, where the compound in three possible protonation states was placed inside binding sites of two available AChE crystal structures. In all six MD trajectories, the ligand generally occupied similar space inside the AChE active site, but the pattern of the interactions between the ligand functional groups and the amino acid residues was significantly different and highly dependent upon the crystal structure used to generate initial systems for simulation. The greatest differences were observed between the trajectories obtained with different AChE crystal structures used as starting target conformations. In some trajectories, several unusual positions and dynamic behavior of the tacrine moiety were observed. Therefore, this study provides important structure-based data useful in further optimization of the reversible, dual binding AChE inhibitors, and also emphasizes the importance of the starting crystal structure used for dynamics as well as the protonation state of the reversible inhibitors.Communicated by Ramaswamy H. Sarma.


Assuntos
Acetilcolinesterase , Tacrina , Acetilcolinesterase/química , Sítios de Ligação , Domínio Catalítico , Inibidores da Colinesterase/química , Simulação de Acoplamento Molecular , Tacrina/química
13.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34948269

RESUMO

In this study, we utilized human DNA topoisomerase IIα as a model target to outline a dynophore-based approach to catalytic inhibitor design. Based on MD simulations of a known catalytic inhibitor and the native ATP ligand analog, AMP-PNP, we derived a joint dynophore model that supplements the static structure-based-pharmacophore information with a dynamic component. Subsequently, derived pharmacophore models were employed in a virtual screening campaign of a library of natural compounds. Experimental evaluation identified flavonoid compounds with promising topoisomerase IIα catalytic inhibition and binding studies confirmed interaction with the ATPase domain. We constructed a binding model through docking and extensively investigated it with molecular dynamics MD simulations, essential dynamics, and MM-GBSA free energy calculations, thus reconnecting the new results to the initial dynophore-based screening model. We not only demonstrate a new design strategy that incorporates a dynamic component of molecular recognition, but also highlight new derivates in the established flavonoid class of topoisomerase II inhibitors.


Assuntos
Desenho de Fármacos/métodos , Inibidores da Topoisomerase II/farmacologia , Antígenos de Neoplasias/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação , Domínio Catalítico/fisiologia , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/metabolismo
14.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203212

RESUMO

Firefly luciferase is susceptible to inhibition and stabilization by compounds under investigation for biological activity and toxicity. This can lead to false-positive results in in vitro cell-based assays. However, firefly luciferase remains one of the most commonly used reporter genes. Here, we evaluated isoflavonoids for inhibition of firefly luciferase. These natural compounds are often studied using luciferase reporter-gene assays. We used a quantitative structure-activity relationship (QSAR) model to compare the results of in silico predictions with a newly developed in vitro assay that enables concomitant detection of inhibition of firefly and Renilla luciferases. The QSAR model predicted a moderate to high likelihood of firefly luciferase inhibition for all of the 11 isoflavonoids investigated, and the in vitro assays confirmed this for seven of them: daidzein, genistein, glycitein, prunetin, biochanin A, calycosin, and formononetin. In contrast, none of the 11 isoflavonoids inhibited Renilla luciferase. Molecular docking calculations indicated that isoflavonoids interact favorably with the D-luciferin binding pocket of firefly luciferase. These data demonstrate the importance of reporter-enzyme inhibition when studying the effects of such compounds and suggest that this in vitro assay can be used to exclude false-positives due to firefly or Renilla luciferase inhibition, and to thus define the most appropriate reporter gene.


Assuntos
Genes Reporter/fisiologia , Isoflavonas/metabolismo , Luciferases de Renilla/metabolismo , Animais , Vaga-Lumes , Genes Reporter/genética , Isoflavonas/química , Luciferases de Renilla/química , Estrutura Secundária de Proteína
15.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206395

RESUMO

The innate immune system's natural killer (NK) cells exert their cytolytic function against a variety of pathological challenges, including tumors and virally infected cells. Their activation depends on net signaling mediated via inhibitory and activating receptors that interact with specific ligands displayed on the surfaces of target cells. The CD94/NKG2C heterodimer is one of the NK activating receptors and performs its function by interacting with the trimeric ligand comprised of the HLA-E/ß2m/nonameric peptide complex. Here, simulations of the all-atom multi-microsecond molecular dynamics in five immune complexes provide atomistic insights into the receptor-ligand molecular recognition, as well as the molecular events that facilitate the NK cell activation. We identify NKG2C, the HLA-Eα2 domain, and the nonameric peptide as the key elements involved in the molecular machinery of signal transduction via an intertwined hydrogen bond network. Overall, the study addresses the complex intricacies that are necessary to understand the mechanisms of the innate immune system.


Assuntos
Complexo Antígeno-Anticorpo/química , Antígenos de Histocompatibilidade Classe I/química , Modelos Moleculares , Subfamília C de Receptores Semelhantes a Lectina de Células NK/química , Subfamília D de Receptores Semelhantes a Lectina de Células NK/química , Peptídeos/química , Sequência de Aminoácidos , Complexo Antígeno-Anticorpo/imunologia , Complexo Antígeno-Anticorpo/metabolismo , Sítios de Ligação , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Ligação de Hidrogênio , Ligantes , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Subfamília D de Receptores Semelhantes a Lectina de Células NK/metabolismo , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Relação Estrutura-Atividade , Antígenos HLA-E
16.
J Chem Inf Model ; 61(7): 3593-3603, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34196180

RESUMO

Natural killer (NK) cells, an important part of the innate immune system, can clear a wide variety of pathological challenges, including tumor, senescent, and virally infected cells. They express various activating and inhibitory receptors on their surface, and the balance of interactions between them and specific ligands displayed on the surface of target cells is critical for NK cell cytolytic function and target cell protection. The CD94/NKG2A heterodimer is one of the inhibitory receptors that interacts with its trimeric ligand consisting of HLA-E, ß2m, and a nonameric peptide. Here, multi-microsecond-long all-atom molecular dynamics simulations of eight immune complexes elucidate the subtleties of receptor (NKG2A/CD94)-ligand (HLA-E/ß2m/peptide) molecular recognition that mediate the NK cell protection from a geometric and energetic perspective. We identify key differences in the interactions between the receptor and ligand complexes, which are via an entangled network of hydrogen bonds fine-tuned by the ligand-specific nonameric peptide. We further reveal that the receptor protein NKG2A regulates the NK cell activity, while its CD94 partner forms the majority of the energetically important interactions with the ligand. This knowledge rationalizes the atomistic details of the fundamental NK cell protection mechanism and may enable a variety of opportunities in rational-based drug discovery for diverse pathologies including viral infections and cancer and elimination of senescent cells associated with potential treatment of many age-related diseases.


Assuntos
Complexo Antígeno-Anticorpo , Antígenos de Histocompatibilidade Classe I , Subfamília C de Receptores Semelhantes a Lectina de Células NK , Subfamília D de Receptores Semelhantes a Lectina de Células NK , Humanos , Células Matadoras Naturais , Peptídeos , Antígenos HLA-E
17.
Mol Biochem Parasitol ; 242: 111350, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33422580

RESUMO

Parasitic infections are a widespread health problem and research of novel anthelmintic compounds is of the utmost importance. In this study we performed a virtual screening campaign by coupling ligand-based pharmacophore, homology modeling and molecular docking. The virtual screening campaign was conducted using a joined pool of the Drugbank database and a library of purchasable compounds in order to identify drug like compounds with similar pharmacological activity. Our aim was to identify compounds with a potential antihelmintic modulatory effect on nicotinic acetylcholine receptors (nAChR). We derived a 3D pharmacophore model based on the chemical features of known Ascaris suum nAChR modulators. To evaluate the in silico predictions, we tested selected hit compounds in contraction assays using somatic muscle flaps of the Ascaris suum neuromuscular tissue. We tested the modulatory effects of GSK575594A, diazepam and flumazenil hit compounds on nematode contractions induced by acetyl choline (ACh). The compound GSK575594A (3 µM) increased the Emax by 21 % with the EC50 dose ratio of 0.96. Diazepam (100 µM) decreased the Emax by 15 % (1.11 g to 0.95 g) with the EC50 ratio of 1.42 (shifted to the left from 11.25 to 7.93). Flumazenil decreased the EC50 value (from 11.22 µM to 4.88 µM) value showing dose ratio of 2.30, and increased the Emax by 4 % (from 1.54 g to 1.59 g). The observed biological activity was rationalized by molecular docking calculations. Docking scores were calculated against several binding sites within the Ascaris suum homology model. We constructed the homology model using the ACR-16 subunit sequence. The compound GSK575594A showed strong affinity for the intersubunit allosteric binding site within the nAChR transmembrane domain. The binding modes of diazepam and flumazenil suggest that these compounds have a comparable affinity for orthosteric and allosteric nAChR binding sites. The selected hit compounds displayed potential for further optimization as lead compounds. Therefore, such compounds may be useful in neutralizing the growing resistance of parasites to drugs, either alone or in combination with existing conventional anthelmintics.


Assuntos
Anti-Helmínticos/farmacologia , Diazepam/farmacologia , Flumazenil/farmacologia , Proteínas de Helminto/química , Músculos/efeitos dos fármacos , Piperazinas/farmacologia , Receptores Nicotínicos/química , Acetilcolina/farmacologia , Animais , Anti-Helmínticos/química , Ascaris suum/efeitos dos fármacos , Ascaris suum/metabolismo , Sítios de Ligação , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Bases de Dados de Compostos Químicos , Diazepam/química , Flumazenil/química , Expressão Gênica , Proteínas de Helminto/agonistas , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Ligantes , Simulação de Acoplamento Molecular , Piperazinas/química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Homologia Estrutural de Proteína , Técnicas de Cultura de Tecidos , Interface Usuário-Computador
18.
Ageing Res Rev ; 66: 101251, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33385543

RESUMO

As the world's population progressively ages, the burden on the socio-economic and health systems is escalating, demanding sustainable and lasting solutions. Cellular senescence, one of the hallmarks of ageing, is a state of irreversible cell cycle arrest that occurs in response to various genotoxic stressors and is considered an important factor in the development of many age-related diseases and therefore a potential therapeutic target. Here, the role of senescent cells in age-related diseases is discussed, focusing on their formation and main characteristics. The mechanisms leading to senescent cells are presented, including replicative and premature senescence as well as senescence that occurs in various physiological processes, such as wound healing. The second part comprises a comprehensive description of various biomarkers currently used for the detection of senescent cells along with the investigated therapeutic approaches, namely senolytics, senomorphics and the clearance of senescent cells by the immune system. Potential delivery systems suitable for such therapies and model organisms to study senescence are also briefly examined. This in-depth overview of cellular senescence contributes to a deeper understanding of a rapidly evolving area aimed to tackle the age-related diseases in a more mechanistic way, as well as highlights future research opportunities.


Assuntos
Senescência Celular , Dano ao DNA , Biomarcadores , Sistema Imunitário
19.
J Chem Inf Model ; 60(7): 3662-3678, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32484690

RESUMO

Human type II topoisomerases, molecular motors that alter the DNA topology, are a major target of modern chemotherapy. Groups of catalytic inhibitors represent a new approach to overcome the known limitations of topoisomerase II poisons such as cardiotoxicity and induction of secondary tumors. Here, we present a class of substituted 4,5'-bithiazoles as catalytic inhibitors targeting the human DNA topoisomerase IIα. Based on a structural comparison of the ATPase domains of human and bacterial type II topoisomerase, a focused chemical library of 4,5'-bithiazoles was assembled and screened to identify compounds that better fit the topology of the human topo IIα adenosine 5'-triphosphate (ATP) binding site. Selected compounds showed inhibition of human topo IIα comparable to that of the etoposide topo II drug, revealing a new class of inhibitors targeting this molecular motor. Further investigations showed that compounds act as catalytic inhibitors via competitive ATP inhibition. We also confirmed binding to the truncated ATPase domain of topo IIα and modeled the inhibitor molecular recognition with molecular simulations and dynophore models. The compounds also displayed promising cytotoxicity against HepG2 and MCF-7 cell lines comparable to that of etoposide. In a more detailed study with the HepG2 cell line, there was no induction of DNA double-strand breaks (DSBs), and the compounds were able to reduce cell proliferation and stop the cell cycle mainly in the G1 phase. This confirms the mechanism of action of these compounds, which differs from topo II poisons also at the cellular level. Substituted 4,5'-bithiazoles appear to be a promising class for further development toward efficient and potentially safer cancer therapies exploiting the alternative topo II inhibition paradigm.


Assuntos
Antineoplásicos , DNA Topoisomerases Tipo II , Catálise , Etoposídeo/toxicidade , Humanos , Inibidores da Topoisomerase II/farmacologia
20.
Commun Biol ; 3(1): 178, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313083

RESUMO

To achieve productive binding, enzymes and substrates must align their geometries to complement each other along an entire substrate binding site, which may require enzyme flexibility. In pursuit of novel drug targets for the human pathogen S. aureus, we studied peptidoglycan N-acetylglucosaminidases, whose structures are composed of two domains forming a V-shaped active site cleft. Combined insights from crystal structures supported by site-directed mutagenesis, modeling, and molecular dynamics enabled us to elucidate the substrate binding mechanism of SagB and AtlA-gl. This mechanism requires domain sliding from the open form observed in their crystal structures, leading to polysaccharide substrate binding in the closed form, which can enzymatically process the bound substrate. We suggest that these two hydrolases must exhibit unusual extents of flexibility to cleave the rigid structure of a bacterial cell wall.


Assuntos
Acetilglucosaminidase/metabolismo , Proteínas de Bactérias/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Peptidoglicano/metabolismo , Staphylococcus aureus/enzimologia , Acetilglucosaminidase/química , Acetilglucosaminidase/genética , Regulação Alostérica , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Catálise , Domínio Catalítico , Hidrólise , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/genética , Domínios Proteicos , Staphylococcus aureus/genética , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA