Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Vis Exp ; (154)2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31885386

RESUMO

The use of experimental animal models has become crucial in cardiovascular science. Most studies using rodent models are focused on two-dimensional imaging to study the cardiac anatomy of the left ventricle and M-mode echo to assess its dimensions. However, this could limit a comprehensive study. Herein, we describe a protocol that allows an assessment of the heart chamber size, left ventricular function (systolic and diastolic) and valvular function. A conventional medical ultrasound machine was used in this protocol and different echo views were obtained through left parasternal, apical and suprasternal windows. In the left parasternal window, the long and short axis were acquired to analyze left chamber dimensions, right ventricle and pulmonary artery dimensions, and mitral, pulmonary and aortic valve function. The apical window allows the measurement of heart chamber dimensions and evaluation of systolic and diastolic parameters. It also allows Doppler assessment with detection and quantification of heart valve disturbances (regurgitation or stenosis). Different segments and walls of the left ventricle are visualized throughout all views. Finally, the ascending aorta, aortic arch, and descending aorta can be imaged through the suprasternal window. A combination of ultrasound imaging, Doppler flow and tissue Doppler assessment have been obtained to study cardiac morphology and function. This represents an important contribution to improve the assessment of cardiac function in adult rats with impact for research using these animal models.


Assuntos
Ecocardiografia/métodos , Ventrículos do Coração/diagnóstico por imagem , Função Ventricular Esquerda/fisiologia , Animais , Feminino , Ventrículos do Coração/anatomia & histologia , Ratos , Ratos Wistar , Sístole/fisiologia
2.
Cytotherapy ; 19(3): 360-370, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28040463

RESUMO

BACKGROUND AIMS: The effect of cryopreservation on mesenchymal stromal cell (MSC) therapeutic properties has become highly controversial. However, data thus far have indiscriminately involved the assessment of different types of MSCs with distinct production processes. This study assumed that MSC-based products are affected differently depending on the tissue source and manufacturing process and analyzed the effect of cryopreservation on a specific population of umbilical cord tissue-derived MSCs (UC-MSCs), UCX®. METHODS: Cell phenotype was assessed by flow cytometry through the evaluation of the expression of relevant surface markers such as CD14, CD19, CD31, CD34, CD44, CD45, CD90, CD105, CD146, CD200, CD273, CD274 and HLA-DR. Immunomodulatory activity was analyzed in vitro through the ability to inhibit activated T cells and in vivo by the ability to reverse the signs of inflammation in an adjuvant-induced arthritis (AIA) model. Angiogenic potential was evaluated in vitro using a human umbilical vein endothelial cell-based angiogenesis assay, and in vivo using a mouse model for hindlimb ischemia. RESULTS: Phenotype and immunomodulatory and angiogenic potencies of this specific UC-MSC population were not impaired by cryopreservation and subsequent thawing, both in vitro and in vivo. DISCUSSION: This study suggests that potency impairment related to cryopreservation in a given tissue source can be avoided by the production process. The results have positive implications for the development of advanced-therapy medicinal products.


Assuntos
Criopreservação , Imunomodulação , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Neovascularização Fisiológica , Cordão Umbilical/citologia , Animais , Diferenciação Celular , Células Cultivadas , Feminino , Citometria de Fluxo , Congelamento/efeitos adversos , Humanos , Imunofenotipagem , Masculino , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar
3.
Stem Cell Res Ther ; 7(1): 145, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27680210

RESUMO

BACKGROUND: Mesenchymal stem cells derived from human umbilical cord tissue, termed UCX®, have the potential to promote a full range of events leading to tissue regeneration and homeostasis. The main goal of this work was to investigate UCX® action in experimentally induced hindlimb ischemia (HLI). METHODS: UCX®, obtained by using a proprietary technology developed by ECBio (Amadora, Portugal), were delivered via intramuscular injection to C57BL/6 females after unilateral HLI induction. Perfusion recovery, capillary and collateral density increase were evaluated by laser doppler, CD31 immunohistochemistry and diaphonisation, respectively. The activation state of endothelial cells (ECs) was analysed after EC isolation by laser capture microdissection microscopy followed by RNA extraction, cDNA synthesis and quantitative RT-PCR analysis. The UCX®-conditioned medium was analysed on Gallios flow cytometer. The capacity of UCX® in promoting tubulogenesis and EC migration was assessed by matrigel tubule formation and wound-healing assay, respectively. RESULTS: We demonstrated that UCX® enhance angiogenesis in vitro via a paracrine effect. Importantly, after HLI induction, UCX® improve blood perfusion by stimulating angiogenesis and arteriogenesis. This is achieved through a new mechanism in which durable and simultaneous upregulation of transforming growth factor ß2, angiopoietin 2, fibroblast growth factor 2, and hepatocyte growth factor, in endothelial cells is induced by UCX®. CONCLUSIONS: In conclusion, our data demonstrate that UCX® improve the angiogenic potency of endothelial cells in the murine ischemic limb suggesting the potential of UCX® as a new therapeutic tool for critical limb ischemia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA