Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36234718

RESUMO

Targeting antioxidants to mitochondria is considered a promising strategy to prevent cellular senescence and skin ageing. In this study, we investigate whether four hydroxybenzoic acid-based mitochondria-targeted antioxidants (MitoBENs, MB1-4) could be used as potential active ingredients to prevent senescence in skin cells. Firstly, we evaluated the chemical stability, cytotoxicity, genotoxicity and mitochondrial toxicity of all compounds. We followed this by testing the antioxidant protective capacity of the two less toxic compounds on human skin fibroblasts. We then assessed the effects of the best hit on senescence, inflammation and mitochondrial remodeling on a 3D skin cell model, while also testing its mutagenic potential. Cytotoxicity and mitochondrial toxicity rankings were produced: MB3 < MB4 ≃ MB1 < MB2 and MB3 < MB1 < MB4 < MB2, respectively. These results suggest that pyrogallol-based compounds (MB2 and MB4) have lower cytotoxicity. The pyrogallol derivative, MB2, containing a 6-carbon spacer, showed a more potent antioxidant protective activity against hydrogen peroxide cytotoxicity. In a 3D skin cell model, MB2 also decreased transcripts related to senescence. In sum, MB2's biological safety profile, good chemical stability and lack of mutagenicity, combined with its anti-senescence effect, converts MB2 into a good candidate for further development as an active ingredient for skin anti-ageing products.


Assuntos
Antioxidantes , Envelhecimento da Pele , Antioxidantes/farmacologia , Carbono , Humanos , Peróxido de Hidrogênio/farmacologia , Hidroxibenzoatos/farmacologia , Mitocôndrias , Pirogalol
2.
Int J Mol Sci ; 23(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35955703

RESUMO

The increasing cancer incidence has certified oncological management as one of the most critical challenges for the coming decades. New anticancer strategies are still needed, despite the significant advances brought to the forefront in the last decades. The most recent, promising therapeutic approaches have benefitted from the application of human perinatal derivatives (PnD), biological mediators with proven benefits in several fields beyond oncology. To elucidate preclinical results and clinic outcomes achieved in the oncological field, we present a narrative review of the studies resorting to animal models to assess specific outcomes of PnD products. Recent preclinical evidence points to promising anticancer effects offered by PnD mediators isolated from the placenta, amniotic membrane, amniotic fluid, and umbilical cord. Described effects include tumorigenesis prevention, uncontrolled growth or regrowth inhibition, tumor homing ability, and adequate cell-based delivery capacity. Furthermore, PnD treatments have been described as supportive of chemotherapy and radiological therapies, particularly when resistance has been reported. However, opposite effects of PnD products have also been observed, offering support and trophic effect to malignant cells. Such paradoxical and dichotomous roles need to be intensively investigated. Current hypotheses identify as explanatory some critical factors, such as the type of the PnD biological products used or the manufacturing procedure to prepare the tissue/cellular treatment, the experimental design (including human-relevant animal models), and intrinsic pathophysiological characteristics. The effective and safe translation of PnD treatments to clinical practice relies on the collaborative efforts of all researchers working with human-relevant oncological preclinical models. However, it requires proper guidelines and consensus compiled by experts and health workers who accurately describe the methodology of tissue collection, PnD isolation, manufacturing, preservation, and delivery to the final user.


Assuntos
Neoplasias , Animais , Feminino , Humanos , Neoplasias/tratamento farmacológico , Gravidez
3.
Mol Biol Rep ; 48(3): 2791-2802, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33733384

RESUMO

Bladder cancer (BC) is the most common cancer of the urinary tract and despite all innovations, remains a major challenge due to high morbidity and mortality. Genomic and epigenetic analyses allowed the discovery of new genes and pathways involved in the pathogenesis and regulation of BC. However, the effect on mortality has been modest and the development of new targets for BC treatment are needed. Recent evidence suggests that cancer cells are under increased stress associated with oncogenic transformation, with changes in metabolic activity and increased generation of reactive oxygen species (ROS). The increased amounts of ROS in cancer cells are associated with stimulation of cellular proliferation, promotion of mutations and genetic instability, as well as alterations in cellular sensitivity to anticancer agents. Since these mechanisms occur in cancer cells, there is a close link between oxidative stress (OS) and BC with implications in prevention, carcinogenesis, prognosis, and treatment. We address the role of OS as an enemy towards BC development, as well as an ally to fight against BC. This review promises to expand our treatment options for BC with OS-based therapies and launches this approach as an opportunity to improve our ability to select patients most likely to respond to personalized therapy.


Assuntos
Estresse Oxidativo , Neoplasias da Bexiga Urinária/patologia , Animais , Resistencia a Medicamentos Antineoplásicos , Humanos , Modelos Biológicos , Neoplasias da Bexiga Urinária/tratamento farmacológico
4.
Biology (Basel) ; 10(1)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435434

RESUMO

Antitumor therapies based on Cold Atmospheric Plasma (CAP) are an emerging medical field. In this work, we evaluated CAP effects on bladder cancer. Two bladder cancer cell lines were used, HT-1376 (stage III) and TCCSUP (stage IV). Cell proliferation assays were performed evaluating metabolic activity (MTT assay) and protein content (SRB assay). Cell viability, cell cycle, and mitochondrial membrane potential (Δψm) were assessed using flow cytometry. Reactive oxygen and nitrogen species (RONS) and reduced glutathione (GSH) were evaluated by fluorescence. The assays were carried out with different CAP exposure times. For both cell lines, we obtained a significant reduction in metabolic activity and protein content. There was a decrease in cell viability, as well as a cell cycle arrest in S phase. The Δψm was significantly reduced. There was an increase in superoxide and nitric oxide and a decrease in peroxide contents, while GSH content did not change. These results were dependent on the exposure time, with small differences for both cell lines, but overall, they were more pronounced in the TCCSUP cell line. CAP showed to have a promising antitumor effect on bladder cancer, with higher sensitivity for the high-grade cell line.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA