Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 17279, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446741

RESUMO

The Brazilian buffy-tufted-ear marmoset (Callithrix aurita), one of the world's most endangered primates, is threatened by anthropogenic hybridization with exotic, invasive marmoset species. As there are few genetic data available for C. aurita, we developed a PCR-free protocol with minimal technical requirements to rapidly generate genomic data with genomic skimming and portable nanopore sequencing. With this direct DNA sequencing approach, we successfully determined the complete mitogenome of a marmoset that we initially identified as C. aurita. The obtained nanopore-assembled sequence was highly concordant with a Sanger sequenced version of the same mitogenome. Phylogenetic analyses unexpectedly revealed that our specimen was a cryptic hybrid, with a C. aurita phenotype and C. penicillata mitogenome lineage. We also used publicly available mitogenome data to determine diversity estimates for C. aurita and three other marmoset species. Mitogenomics holds great potential to address deficiencies in genomic data for endangered, non-model species such as C. aurita. However, we discuss why mitogenomic approaches should be used in conjunction with other data for marmoset species identification. Finally, we discuss the utility and implications of our results and genomic skimming/nanopore approach for conservation and evolutionary studies of C. aurita and other marmosets.


Assuntos
Callithrix/genética , Espécies em Perigo de Extinção , Genômica/métodos , Hibridização Genética/genética , Sequenciamento por Nanoporos/métodos , Animais , Brasil , Callithrix/classificação , DNA Mitocondrial/classificação , DNA Mitocondrial/genética , Evolução Molecular , Genoma Mitocondrial/genética , Masculino , Fenótipo , Filogenia , Especificidade da Espécie
2.
Mol Biochem Parasitol ; 224: 26-36, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30040977

RESUMO

Neospora caninum is an apicomplexan parasite that causes infectious abortion in cows. As an obligate intracellular parasite, N. caninum requires a host cell environment to survive and replicate. The locomotion and invasion mechanisms of apicomplexan parasites are centred on the actin-myosin system to propel the parasite forwards and into the host cell. The functions of actin, an intrinsically dynamic protein, are modulated by actin-binding proteins (ABPs). Actin-depolymerising factor (ADF) is a ubiquitous ABP responsible for accelerating actin turnover in eukaryotic cells and is one of the few known conserved ABPs from apicomplexan parasites. Apicomplexan ADFs have nonconventional properties compared with ADF/cofilins from higher eukaryotes. In the present paper, we characterised the ADF from N. caninum (NcADF) using computational and in vitro biochemical approaches to investigate its function in rabbit muscle actin dynamics. Our predicted computational tertiary structure of NcADF demonstrated a conserved structure and phylogeny with respect to other ADF/cofilins, although certain differences in filamentous actin (F-actin) binding sites were present. The activity of recombinant NcADF on heterologous actin was regulated in part by pH and the presence of inorganic phosphate. In addition, our data suggest a comparatively weak disassembly of F-actin by NcADF. Taken together, the data presented herein represent a contribution to the field towards the understanding of the role of ADF in N. caninum and a comparative analysis of ABPs in the phylum Apicomplexa.


Assuntos
Actinas/metabolismo , Destrina/química , Destrina/metabolismo , Neospora/enzimologia , Animais , Sítios de Ligação , Concentração de Íons de Hidrogênio , Modelos Moleculares , Fosfatos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA