Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Environ Manage ; 344: 118639, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37480639

RESUMO

The occurrence of emerging pollutants on effluents of wastewater treatment plants makes unfeasible their reutilization and consequently to comply with the sixth goal of 2030 Agenda for sustainable development. Thus, it is extremely important to find ways to remove these pollutants without compromising the quality of reclaimed water. Ozonation has been successfully explored for this purpose, but it still presents limitations towards some oxidant-resistant pollutants. To surpass this, the conversion of ozone (O3) into more reactive species is required, which can be accomplished by using catalysts. Carbon catalysts, such as activated carbons (ACs), represent a more environmentally attractive option than traditional metal-based catalysts, with the advantage of being easily modified to tune their textural and surface properties to the reaction chemistry. In this study, two different sources of ACs were tested in the catalytic ozonation of a frequently detected emerging pollutant: salicylic acid (SalAc). These ACs were submitted to thermal treatment under H2 and functionalization with N precursors, such as melamine and poly(ethyleneimine), to induce changes in the surface properties, especially in the nitrogen content. Although no correlation was found between the N-content and catalytic activity, the thermal treatment under H2 increased the mesopores surface area (Smeso), which reflected in greater catalytic activity. As that, the best-performing AC was the one with the highest Smeso, which revealed also to be resistant to O3 and able to convert O3 into more reactive species, evidenced by the capacity of oxalic acid, a well-known ozone-resistant by-product. The same AC was then submitted to three consecutive reutilization cycles and a more significant activity loss was observed in terms of SalAc degradation rate (⁓ 40%) then total organic carbon removal (⁓ 25%), from the first to the third cycle. This decline in efficiency was ascribed to the presence of by-products adhered to the catalyst surface, which impede its ability to react effectively with O3.


Assuntos
Poluentes Ambientais , Ozônio , Ácido Salicílico , Temperatura , Carvão Vegetal , Nitrogênio , Ácido Oxálico
2.
J Environ Manage ; 343: 118140, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244099

RESUMO

The removal of p-nitrophenol (PNP) from wastewater was evaluated by the activated persulfate process using different materials - carbon xerogels (XG), carbon nanotubes (CNT), and activated carbon (AC) -, and also using such materials doped with nitrogen (XGM, CNTM and ACM). These carbon materials were impregnated with 2 wt.% of iron and tested in the oxidative process to assess the influence of their textural and surface chemical properties. The carbon-based materials' properties influence the efficiencies of the adsorption and oxidative processes; in adsorption, the materials with higher specific surface areas (SBET), i.e. AC (824 m2/g) and Fe/AC (807 m2/g), have shown to be the most promising (having achieved a PNP removal of about 20%); on the other hand, in the activated persulfate process the carbon or iron-containing carbon materials with the highest mesoporous areas (Smeso) were the preferential ones - XG and Fe/XG, respectively - reaching removals of 47.3% and 75.7% for PNP and 44.9 and 63.3% for TOC, respectively. Moreover, the presence of nitrogen groups on the samples' surface benefits both processes, being found that PNP degradation and mineralization increase with the nitrogen content. The stability of the best materials (XGM and Fe/XGM) was evaluated during four cycles, being noticed that while XGM lost catalytic activity, the Fe/XGM sample remained stable without leaching of iron. The quantification of intermediate compounds formed during persulfate oxidation was performed, and only oxalic acid was detected, in addition to PNP, being that their contribution to the TOC measured was higher than 99%. Experiments carried out in the presence of radical scavengers proved that only the sulfate radical is present under the acidic conditions used. Complete PNP oxidation and TOC removal of ∼96% were reached for the activated persulfate process, proving to be more attractive than the Fenton one.


Assuntos
Nanotubos de Carbono , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Ferro/química , Oxirredução , Carvão Vegetal , Nitrogênio
3.
Water Res ; 159: 333-347, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31108362

RESUMO

This work evaluated the removal of a mixture of eight antibiotics (i.e. ampicillin (AMP), azithromycin (AZM), erythromycin (ERY), clarithromycin (CLA), ofloxacin (OFL), sulfamethoxazole (SMX), trimethoprim (TMP) and tetracycline (TC)) from urban wastewater, by ozonation operated in continuous mode at different hydraulic retention times (HRTs) (i.e. 10, 20, 40 and 60 min) and specific ozone doses (i.e. 0.125, 0.25, 0.50 and 0.75 gO3 gDOC- 1). As expected, the efficiency of ozonation was highly ozone dose- and contact time-dependent. The removal of the parent compounds of the selected antibiotics to levels below their detection limits was achieved with HRT of 40 min and specific ozone dose of 0.125 gO3 gDOC- 1. The effect of ozonation was also investigated at a microbiological and genomic level, by studying the efficiency of the process with respect to the inactivation of Escherichia coli and antibiotic-resistant E. coli, as well as to the reduction of the abundance of selected antibiotic resistance genes (ARGs). The inactivation of total cultivable E. coli was achieved under the experimental conditions of HRT 40 min and 0.25 gO3 gDOC-1, at which all antibiotic compounds were already degraded. The regrowth examinations revealed that higher ozone concentrations were required for the permanent inactivation of E. coli below the Limit of Quantification (

Assuntos
Ozônio , Purificação da Água , Antibacterianos , Resistência Microbiana a Medicamentos , Escherichia coli , Eliminação de Resíduos Líquidos , Águas Residuárias
4.
ACS Appl Mater Interfaces ; 9(51): 44740-44755, 2017 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-29215875

RESUMO

Porous carbons derived from metal-organic frameworks (MOFs) are promising materials for a number of energy- and environment-related applications, but their almost exclusively microporous texture can be an obstacle to their performance in practical uses. Here, we introduce a novel strategy for the generation of very uniform mesoporosity in a prototypical MOF, namely, zeolitic imidazolate framework-8 (ZIF-8). The process, referred to as "nanopore lithography", makes use of graphene oxide (GO) nanosheets enclosing ZIF-8 particles as masks or templates for the transfer of mesoporous texture to the latter. Upon controlled carbonization and activation, nanopores created in the GO envelope serve as selective entry points for localized etching of carbonized ZIF-8, so that such nanopores are replicated in the MOF-derived carbonaceous structure. The resulting porous carbons are dominated by uniform mesopores ∼3-4 nm in width and possess specific surface areas of ∼1300-1400 m2 g-1. Furthermore, we investigate and discuss the specific experimental conditions that afford the mesopore-templating action of the GO nanosheets. Electrochemical characterization revealed an improved capacitance as well as a faster, more reversible charge/discharge kinetics for the ZIF-8-derived porous carbons obtained through nanopore lithography, relative to those for their counterparts with standard activation (no GO templating), thus indicating the potential practical advantage of the present approach in capacitive energy storage applications.

5.
ACS Appl Mater Interfaces ; 9(28): 24085-24099, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28644607

RESUMO

Graphene and graphene-based materials have shown great promise in many technological applications, but their large-scale production and processing by simple and cost-effective means still constitute significant issues in the path of their widespread implementation. Here, we investigate a straightforward method for the preparation of a ready-to-use and low oxygen content graphene material that is based on electrochemical (anodic) delamination of graphite in aqueous medium with sodium halides as the electrolyte. Contrary to previous conflicting reports on the ability of halide anions to act as efficient exfoliating electrolytes in electrochemical graphene exfoliation, we show that proper choice of both graphite electrode (e.g., graphite foil) and sodium halide concentration readily leads to the generation of large quantities of single-/few-layer graphene nanosheets possessing a degree of oxidation (O/C ratio down to ∼0.06) lower than that typical of anodically exfoliated graphenes obtained with commonly used electrolytes. The halide anions are thought to play a role in mitigating the oxidation of the graphene lattice during exfoliation, which is also discussed and rationalized. The as-exfoliated graphene materials exhibited a three-dimensional morphology that was suitable for their practical use without the need to resort to any kind of postproduction processing. When tested as dye adsorbents, they outperformed many previously reported graphene-based materials (e.g., they adsorbed ∼920 mg g-1 for methyl orange) and were useful sorbents for oils and nonpolar organic solvents. Supercapacitor cells assembled directly from the as-exfoliated products delivered energy and power density values (up to 15.3 Wh kg-1 and 3220 W kg-1, respectively) competitive with those of many other graphene-based devices but with the additional advantage of extreme simplicity of preparation.

6.
J Colloid Interface Sci ; 496: 141-149, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28214624

RESUMO

Cobalt-cerium mixed oxides were prepared by the wet impregnation method and evaluated for volatile organic compounds (VOCs) abatement, using ethyl acetate (EtAc) as model molecule. The impact of Co content on the physicochemical characteristics of catalysts and EtAc conversion was investigated. The materials were characterized by various techniques, including N2 adsorption at -196°C, scanning electron microscopy (SEM), X-ray diffraction (XRD), H2-temperature programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS) to reveal the structure-activity relationship. The obtained results showed the superiority of mixed oxides compared to bare CeO2 and Co3O4, demonstrating a synergistic effect. The optimum oxidation performance was achieved with the sample containing 20wt.% Co (Co/Ce atomic ratio of ca. 0.75), in which complete conversion of EtAc was attained at 260°C. In contrast, temperatures above 300°C were required to achieve 100% conversion over the single oxides. Notably, a strong relationship between both the: (i) relative population, and (ii) facile reduction of lattice oxygen with the ethyl acetate oxidation activity was found, highlighting the key role of loosely bound oxygen species on VOCs oxidation. A synergistic Co-Ce interaction can be accounted for the enhanced reducibility of mixed oxides, linked with the increased mobility of lattice oxygen.

7.
J Environ Manage ; 195(Pt 2): 208-215, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27570144

RESUMO

The photocatalytic ozonation of aniline (ANL) aqueous solutions was carried out in the presence of neat titanium dioxide (TiO2), multi-walled carbon nanotubes (MWCNT) and a composite of TiO2 and MWCNT. Independent tests for catalytic ozonation and photocatalysis were also carried out in order to explore the potential occurrence of a synergetic effect. Photocatalytic and catalytic ozonation carried out with an ozone dose of 50 g m-3 converted ANL in 15 min. Photocatalysis using P25, commercial TiO2, and an 80:20 (w/w) composite of P25 and MWCNT also led to total ANL conversion, but at longer reaction times. Removal of TOC was higher than 70% for all photocatalytic ozonation systems at 1 h of reaction. With the exception of neat MWCNT, photocatalytic ozonation in the presence of the selected samples led to nearly complete mineralization after 3 h of reaction. Photocatalytic ozonation completely removed oxalic acid (OXA) formed during ANL degradation. The concentration of oxamic acid (OMA, other ANL degradation by-product more refractory than OXA) generally increased with time, and in the photocatalytic ozonation with P25 based materials its concentration decreased earlier. The presence of nitrates and ammonium was confirmed during ANL degradation by all tested treatments, with the exception of the cation in TiO2 catalysed reactions.


Assuntos
Nanotubos de Carbono , Poluentes Químicos da Água , Compostos de Anilina , Catálise , Ácido Oxálico , Ozônio , Titânio
8.
Water Res ; 101: 441-447, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27295618

RESUMO

The catalytic effect of commercial microporous activated carbon (AC) and macroporous carbon nanotubes (CNT) is investigated in reductive bioreactions in continuous high rate anaerobic reactors, using the azo dye Acid Orange 10 (AO10) as model compound as electron acceptor and a mixture of VFA as electron donor. Size and concentration of carbon materials (CM) and hydraulic retention time (HRT) are assessed. CM increased the biological reduction rate of AO10, resulting in significantly higher colour removal, as compared to the control reactors. The highest efficiency, 98%, was achieved with a CNT diameter (d) lower than 0.25 mm, at a CNT concentration of 0.12 g per g of volatile solids (VS), a HRT of 10 h and resulted in a chemical oxygen demand (COD) removal of 85%. Reducing the HRT to 5 h, colour and COD removal in CM-mediated bioreactors were above 90% and 80%, respectively. In the control reactor, thought similar COD removal was achieved, AO10 decolourisation was just approximately 20%, demonstrating the ability of CM to significantly accelerate the reduction reactions in continuous bioreactors. AO10 reduction to the correspondent aromatic amines was proved by high performance liquid chromatography (HPLC). Colour decrease in the reactor treating a real effluent with CNT was the double comparatively to the reactor operated without CNT. The presence of AC in the reactor did not affect the microbial diversity, as compared to the control reactor, evidencing that the efficient reduction of AO10 was mainly due to AC rather than attributed to changes in the composition of the microbial communities.


Assuntos
Nanotubos de Carbono , Eliminação de Resíduos Líquidos , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos
9.
Environ Technol ; 36(9-12): 1075-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25295389

RESUMO

Aniline (ANL), an aromatic amine, oxalic acid (OXA) and oxamic acid (OMA), short-chain carboxylic acids, were chosen as model organic pollutants for testing the combined effect of neat photolysis and ozonation in the treatment of aqueous effluents. In order to better understand the results, single ozonation and neat photolysis were also carried out. OXA has a high refractory character relatively to single ozonation and neat photolysis only accounted for 26% conversion of OXA after 2 h of reaction. On the other hand, OXA complete degradation was observed in less than an hour when ozone and light were used simultaneously. Despite OMA, a compound never studied before by a combined ozonation and photolysis treatment, being highly refractory to oxidation, more than 50% was removed by photo-ozonation after 3 h of reaction. In the case of ANL, both single ozonation and photo-ozonation resulted in 100% removal in a short reaction period due to the high reactivity of ozone to attack this type of molecules; however, only the combined method leads to efficient mineralization (89%) after 3 h of reaction. A significant synergetic effect was observed in the degradation of the selected contaminants by the simultaneous use of ozone and light, since the mineralization rate of combined method is higher than the sum of the mineralization rates of the individual treatments. The promising results observed in the degradation of the selected contaminants are paving the way to the application of photo-ozonation in the treatment of wastewater containing this type of pollutants.


Assuntos
Compostos de Anilina/química , Ácido Oxálico/química , Ácido Oxâmico/química , Fotólise , Poluentes Químicos da Água/química , Compostos de Anilina/efeitos da radiação , Ácido Oxálico/efeitos da radiação , Ácido Oxâmico/efeitos da radiação , Ozônio , Poluentes Químicos da Água/efeitos da radiação
10.
Water Sci Technol ; 68(6): 1377-83, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24056437

RESUMO

Emerging micropollutants have been recently the target of interest for their potential harmful effects in the environment and their resistance to conventional water treatments. Catalytic ozonation is an advanced oxidation process consisting of the formation of highly reactive radicals from the decomposition of ozone promoted by a catalyst. Nanocarbon materials have been shown to be effective catalysts for this process, either in powder form or grown on the surface of a monolithic structure. In this work, carbon nanofibers grown on the surface of a cordierite honeycomb monolith are tested as catalyst for the ozonation of five selected micropollutants: atrazine (ATZ), bezafibrate, erythromycin, metolachlor, and nonylphenol. The process is tested both in laboratorial and real conditions. Later on, ATZ was selected as a target pollutant to further investigate the role of the catalytic material. It is shown that the inclusion of a catalyst improves the mineralization degree compared to single ozonation.


Assuntos
Carbono/química , Cerâmica/química , Nanofibras/química , Oxidantes/química , Ozônio/química , Poluentes Químicos da Água/química , Acetamidas/química , Atrazina/química , Bezafibrato/química , Catálise , Eritromicina/química , Fenóis/química , Eliminação de Resíduos Líquidos/métodos
11.
J Hazard Mater ; 239-240: 249-56, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23009793

RESUMO

The catalytic ozonation of the herbicide metolachlor (MTLC) was tested using carbon nanomaterials as catalysts. Multiwalled carbon nanotubes were used in semi-batch experiments and carbon nanofibres grown on a honeycomb cordierite monolith were tested in continuous experiments. The application of the carbon catalyst was shown to improve the mineralization degree of MTLC and to decrease the toxicity of the solution subject to ozonation. Degradation by-products were also followed in order to compare the two processes. The application of the carbon coated monolith to the continuous ozonation process was shown to have potential as it improved the TOC removal from 5% to 35% and decreased the inhibition of luminescent activity of Vibrio Fischeri from 25% to 12%.


Assuntos
Acetamidas/química , Nanofibras/química , Nanotubos de Carbono/química , Oxidantes/química , Ozônio/química , Poluentes Químicos da Água/química , Acetamidas/toxicidade , Aliivibrio fischeri/metabolismo , Catálise , Cerâmica/química , Herbicidas/química , Herbicidas/toxicidade , Luminescência , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodos
12.
Water Sci Technol ; 65(10): 1854-62, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22546802

RESUMO

Carbon nanofibres (CNFs) were grown on different macrostructured supports such as cordierite monoliths, carbon felts and sintered metal fibres. The resulting composites exhibited excellent resistance to attrition/corrosion and its porosity is mainly due to mesoporous structures. The CNF/structured materials were tested in the ozonation of oxalic acid in a conventional semi-batch reactor after being crushed to powder form, and in a newly designed reactor that may operate in semi-batch or continuous operation. The CNFs supported on the different structured materials exhibited high catalytic activity in the mineralization of oxalic acid.


Assuntos
Carbono/química , Nanofibras/química , Ácido Oxálico/química , Ozônio/química , Poluição Química da Água/prevenção & controle , Catálise , Eliminação de Resíduos Líquidos/instrumentação , Poluentes Químicos da Água/química
13.
J Hazard Mater ; 213-214: 133-9, 2012 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-22341747

RESUMO

Manganese oxide and manganese oxide-carbon composites were prepared and tested as catalysts for the removal of oxalic acid by ozonation. Their performances were compared with the parent carbon material (activated carbon or carbon xerogel) used to prepare the composites. Oxalic acid degradation by carbon materials is slower than that attained with manganese oxide or manganese oxide-carbon composites. A complete degradation after 90 and 45 min of reaction was obtained for carbon materials and for the catalysts containing manganese, respectively. The ozonation in the presence of the prepared composites are supposed to occur mainly by surface reactions, following a direct oxidation mechanism by molecular ozone and/or surface oxygenated radicals.


Assuntos
Carbono/química , Compostos de Manganês/química , Ácido Oxálico/química , Óxidos/química , Ozônio/química , Catálise , Cristalização , Microscopia Eletrônica de Varredura , Espectrometria por Raios X , Termodinâmica , Difração de Raios X
14.
Water Res ; 45(15): 4583-91, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21733541

RESUMO

The adsorption capacity of ciprofloxacin (CPX) was determined on three types of carbon-based materials: activated carbon (commercial sample), carbon nanotubes (commercial multi-walled carbon nanotubes) and carbon xerogel (prepared by the resorcinol/formaldehyde approach at pH 6.0). These materials were used as received/prepared and functionalised through oxidation with nitric acid. The oxidised materials were then heat treated under inert atmosphere (N2) at different temperatures (between 350 and 900°C). The obtained samples were characterised by adsorption of N2 at -196 °C, determination of the point of zero charge and by temperature programmed desorption. High adsorption capacities ranging from approximately 60 to 300 mgCPxgC(-1) were obtained (for oxidised carbon xerogel, and oxidised thermally treated activated carbon Norit ROX 8.0, respectively). In general, it was found that the nitric acid treatment of samples has a detrimental effect in adsorption capacity, whereas thermal treatments, especially at 900 °C after oxidation, enhance adsorption performance. This is due to the positive effect of the surface basicity. The kinetic curves obtained were fitted using 1st or 2nd order models, and the Langmuir and Freundlich models were used to describe the equilibrium isotherms obtained. The 2nd order and the Langmuir models, respectively, were shown to present the best fittings.


Assuntos
Carbono/química , Ciprofloxacina/química , Purificação da Água/métodos , Adsorção , Carvão Vegetal/química , Cinética , Oxirredução , Oxigênio/química , Oxigênio/metabolismo , Temperatura
15.
J Hazard Mater ; 192(2): 545-53, 2011 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-21684081

RESUMO

This work aims at the reutilization of a Cr-loaded NaY zeolite obtained by biorecovery of chromium from water as catalyst in the oxidation of volatile organic compounds (VOC). Cr-NaY catalysts were obtained after biosorption of Cr(VI) using a bacterium, Arthrobacter viscosus, supported on the zeolite. The biosorption experiments were conducted at different pH values in the range 1-4. The catalysts were characterized by several techniques, namely ICP-AES, SEM-EDS, XRD, XPS, Raman, H(2)-TPR and N(2) adsorption. The zeolite obtained at pH 4 has the highest content of chromium, 0.9%, and was selected as the best catalyst for the oxidation of different VOC, namely ethyl acetate, ethanol and toluene. For all VOC tested, the catalyst with chromium showed higher activity and selectivity to CO(2), in comparison with the starting zeolite NaY. The presence of chromium shifted also the reaction pathways. In terms of selectivity to CO(2), the following sequence was observed: ethyl acetate>toluene>ethanol.


Assuntos
Cromo/química , Compostos Orgânicos Voláteis/química , Ítrio/química , Zeolitas/química , Catálise , Microscopia Eletrônica de Varredura , Oxirredução , Análise Espectral
16.
ACS Appl Mater Interfaces ; 3(7): 2289-99, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21615151

RESUMO

This work reports the synthesis and characterization of mesoporous silica nanoparticles (MSNs) functionalized with tridecafluorooctyltriethoxysilane (F13) and their in situ incorporation onto cotton textiles. The hybrid MSNs and the functional textiles were prepared by a one-pot co-condensation methodology between tetraethylorthosilicate (TEOS) and F13, with hexadecyltrimethylammonium chloride (CTAC) as the template and triethanolamine as the base. The influence of the F13 to TEOS molar ratio (1:10, 1:5 and 1:3) on the nanoparticle morphology, porosity, degree of functionalization, and hydro/oleophobic properties is discussed. The hybrid nanosilicas presented high colloidal stability and were spherical and monodispersed with average particle size of ∼45 nm. They also showed high surface areas, large pore volumes, and a wormhole-type mesoporous structure. The increase in the organosilane proportion during the co-condensation process led to a more radially branched wormhole-like mesoporosity, a decrease in the surface area, pore volume, and amount of surface silanol groups, and an enrichment of the surface with fluorocarbon moieties. These changes imparted hydrophobic and oleophobic properties to the materials, especially to that containing the highest F13 loading. Cotton textiles were coated with the F13-MSNs through an efficient and less time-consuming route. The combination between surface roughness and mesoporosity imparted by the MSNs, and the low surface energy provided by the organosilane resulted in superhydrophobic functional textiles. Moreover, the textile with the highest loading of fluorocarbon groups was superamphiphobic.


Assuntos
Fibra de Algodão , Nanopartículas , Dióxido de Silício/química , Microscopia Eletrônica de Varredura , Difração de Pó
17.
J Colloid Interface Sci ; 357(1): 210-4, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21345439

RESUMO

The influence of texture and surface chemistry on the phenol adsorption capacity of activated carbon fibres (ACFs) was studied. ACFs were prepared by carbonization of a phenolic textile fibre under nitrogen flow, followed by activation with H(2)O and CO(2) (under atmospheric pressure and supercritical state). The materials were characterised by N(2) and CO(2) adsorption, and by temperature programmed desorption studies. A strong correlation between the amount of adsorbed phenol and the micropore volume has been observed. The relationship between surface oxygen concentration and amount of physisorbed and chemisorbed phenol was assessed, and it was shown that higher amounts of surface oxygen groups decreased the phenol chemisorption capacity of ACFs.

18.
J Hazard Mater ; 185(2-3): 1236-40, 2011 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-21044815

RESUMO

The catalytic oxidation of two-component VOC mixtures (ethanol, ethyl acetate and toluene) was studied over cryptomelane. Remarkable mixture effects were observed on the activity and the selectivity. Toluene inhibits both ethyl acetate and ethanol oxidation, this effect being more evident in the case of ethyl acetate. For instance, the temperature for 100% conversion is about 210 °C when ethyl acetate is oxidised alone, and 250 °C or higher, when it is oxidised in mixtures with toluene. On the contrary, toluene oxidation is only slightly inhibited by the presence of ethyl acetate, while the presence of ethanol has a promoting effect. Concerning the mixtures of ethyl acetate and ethanol, both compounds have a mutual inhibitory effect, which is more evident in the case of ethyl acetate (the temperature for 100% conversion of ethyl acetate is about 45 °C higher when ethyl acetate is oxidised in mixtures with ethanol, while in the case of ethanol the corresponding increase is only 10 °C).


Assuntos
Acetatos/química , Etanol/química , Compostos de Manganês/química , Tolueno/química , Catálise , Oxirredução , Compostos Orgânicos Voláteis
19.
J Hazard Mater ; 183(1-3): 931-9, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20800966

RESUMO

The surface chemistry of a commercial AC (AC(0)) was selectively modified, without changing significantly its textural properties, by chemical oxidation with HNO(3) (AC(HNO3)) and O(2) (AC(O2)), and thermal treatments under H(2) (AC(H2)) or N(2) (AC(N2)) flow. The effect of modified AC on anaerobic chemical dye reduction was assayed with sulphide at different pH values 5, 7 and 9. Four dyes were tested: Acid Orange 7, Reactive Red 2, Mordant Yellow 10 and Direct Blue 71. Batch experiments with low amounts of AC (0.1 g L(-1)) demonstrated an increase of the first-order reduction rate constants, up to 9-fold, as compared with assays without AC. Optimum rates were obtained at pH 5 except for MY10, higher at pH 7. In general, rates increased with increasing the pH of point zero charge (pH(pzc)), following the trend AC(HNO3) < AC(O2) < AC(0) < AC(N2) < AC(H2). The highest reduction rate was obtained for MY10 with AC(H2) at pH 7, which corresponded to the double, as compared with non-modified AC. In a biological system using granular biomass, AC(H2) also duplicated and increase 4.5-fold the decolourisation rates of MY10 and RR2, respectively. In this last experiment, reaction rate was independent of AC concentration in the tested range 0.1-0.6 g L(-1).


Assuntos
Compostos Azo/química , Carvão Vegetal/química , Corantes/química , Poluentes Químicos da Água/química , Temperatura Alta , Hidrogênio , Concentração de Íons de Hidrogênio , Cinética , Ácido Nítrico , Nitrogênio , Oxirredução , Oxigênio , Propriedades de Superfície
20.
Chemosphere ; 74(6): 818-24, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19027138

RESUMO

Several metal oxides, as well as metal oxides supported on activated carbon, were assessed as ozonation catalysts for the removal of selected organic compounds. Two transition metals (Mn, Co) and one rare earth element (Ce) were chosen for the preparation of the two series of catalysts. These materials were used in the ozonation of two aromatic compounds (aniline and sulfanilic acid) and one textile azo dye (CI Acid Blue 113). The results were compared with those obtained with non-catalytic ozonation. All the tested materials were found to be effective ozonation catalysts. Among the metal oxides, those containing mixtures of cerium and manganese or cerium and cobalt enabled the highest mineralisation degrees. After 120 min of reaction the TOC removal achieved with Ce-Mn-O was 63% for sulfanilic acid and 67% for aniline, while Ce-Co-O allowed TOC removals of 58 and 66%, respectively. With single ozonation, the mineralisation of sulfanilic acid and aniline solutions was 34% and 40% after identical reaction period. Regarding the metal oxides supported on activated carbon, cerium and manganese oxides were, in general, the most active for the degradation of the studied compounds.


Assuntos
Cério/química , Cobalto/química , Compostos de Manganês/química , Óxidos/química , Ozônio/química , Carbono/química , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA