Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxicon ; 199: 139-144, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34153309

RESUMO

The regulation of tolerable levels of ochratoxin A in food for human and animal consumption has been defined in some countries. To meet these levels, simpler, more efficient, and faster analytical methods are being developed to facilitate the identification of this dangerous contaminant in food. Here, we combined gold nanoparticles (AuNPs) with anti-ochratoxin A (OTA) IgG to detect elementary levels of OTA based on Localized Surface Plasmon Resonance. AuNPs were prepared with trisodium citrate and characterized by UV-visible spectroscopy, X-ray, dynamic light scattering, and transmission electron microscopy. The conjugation of AuNPs to IgG anti-OTA was confirmed by bathochromic shift (UV-vis) and RAMAN spectroscopy. The sensitivity of the nanosensor was investigated by measuring LSPR band λmax shifts. Our results suggest this assay is highly sensitive, with a lower detection limit of about 0.001 pg mL-1. The LSPR nanosensor reduced detection limits by roughly 10 times compared to other methods. We demonstrated that the approach investigated here is a rapid and sensitive method for OTA detection.


Assuntos
Nanopartículas Metálicas , Ocratoxinas , Animais , Ouro , Humanos , Ocratoxinas/análise , Ressonância de Plasmônio de Superfície
2.
Front Bioeng Biotechnol ; 8: 573461, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123515

RESUMO

The spleen is considered a non-essential organ. However, its importance is increasingly clear, given the serious disorders caused by its absence or dysfunction, e.g., greater susceptibility to infections, thromboembolism and cancer. Surgical techniques to preserve the spleen and maintain splenic function have become increasingly common. However, the morbidity and mortality associated with its absence and dysfunction are still high. We used the decellularization technique to obtain a viable splenic scaffold for recellularization in vitro and propose the idea of bioengineered spleen transplantation to the host. We observed the maintenance of important structural components such as white pulp, marginal zone and red pulp, in addition to the network of vascular ducts. The decellularized scaffold presents minimal residual DNA and SDS, which are essential to prevent immunogenic responses and transplantation failure. Also, the main components of the splenic matrix were preserved after decellularization, with retention of approximately 72% in the matrisomal protein content. The scaffold we developed was partially recellularized with stromal cells from the spleen of neonatal rats, demonstrating adhesion, proliferation and viability of cells. Therefore, the splenic scaffold is very promising for use in studies on spleen reconstruction and transplantation, with the aim of complete recovery of splenic function.

3.
Sci Rep ; 9(1): 16019, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690887

RESUMO

Green synthesis of metallic nanoparticles has become incredibly popular, mainly by minimizing problems of environmental contamination and by being able to reduce, stabilize and potentially functionalize nanomaterials. Such compounds have possible applications in various areas, e.g., pharmaceuticals (drug delivery systems, cosmetics), textile industry (clothing with antimicrobial properties), diagnostic medicine (imaging, high efficiency biosensors), energy (solar panels), bioremediation, among others. However, the lack of reproducibility and information on the control mechanisms during synthesis have made the application of green-synthesized nanoparticles unfeasible. Thus, this study proposed the investigation of the main mechanisms affecting synthesis control, using factorial design for the preparation of gold nanoparticles with extract of Coffea arabica. We obtained stable (Zeta Potential, UV-vis and DLS), monodisperse, and quasi-spherical (TEM) nanoparticles, which presented adsorbed aromatic molecules (FTIR and RAMAN) and defined crystal structure (XRD), proving that the plant extract acted as a reducing agent, as well as a stabilizer and functionalizer for the synthesized nanostructures. The factorial design employed here to obtain gold nanoparticles with Coffea arabica extract allowed for a controlled and reproducible synthesis, enabling new possibilities for the application in several fields.


Assuntos
Coffea/química , Ouro/química , Química Verde , Nanopartículas Metálicas/química , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Extratos Vegetais/química , Solventes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
4.
Sci Rep ; 9(1): 12211, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31434981

RESUMO

One of the main problems of the decellularization technique is the subjectivity of the final evaluation of its efficacy in individual organs. This problem can result in restricted cell repopulation reproducibility and worse responses to transplant tissues. Our proposal is to analyze the optical profiles produced by hearts during perfusion decellularization, as an additional method for evaluating the decellularization process of each individual organ. An apparatus comprised of a structured LED source and photo detector on an adjustable base was developed to capture the relationship between transmitted light during the perfusion of murine hearts, and residual DNA content. Voltage-time graphic records were used to identify a nonlinear mathematical model to discriminate between decellularizations with remaining DNA above (Incomplete Decellularization) and below (Complete Decellularization) the standardized limits. The results indicate that temporal optical evaluation of the process enables inefficient cell removal to be predicted in the initial stages, regardless of the apparent transparency of the organ. Our open system also creates new possibilities to add distinct photo detectors, such as for specific wavelengths, image acquisition, and physical-chemical evaluation of the scaffold, in order to collect different kinds of information, from dozens of studies. These data, when compiled and submitted to machine learning techniques, have the potential to initiate an exponential advance in tissue bioengineering research.


Assuntos
Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Modelos Teóricos , Miocárdio/química , Imagem Óptica , Animais , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA