Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Microbiol Methods ; 217-218: 106873, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38128700

RESUMO

Silver nanoparticles incorporation into polymeric packaging aims to prevent microbiological contamination in food products, thus ensuring superior food safety and preservation. In this context, this study aimed to verify the antimicrobial efficacy of linear low-density polyethylene (LLDPE) films incorporated with silver nanoparticles (AgNPs) dispersed in silica (SiO2) and hydroxyapatite (HAP) carriers at different concentrations. AgNPs + carriers polymer films were characterized at 0.2, 0.4, and 0.6% concentrations using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission gun-scanning electron microscope (FEG-SEM), thermogravimetric analyzer (TGA), differential scanning calorimetry (DSC), and migration in acidic and non-acidic simulants. Antimicrobial action was investigated on Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli, and the Penicillium expansum and Fusarium solani fungi with antimicrobial activity by direct contact test and bacterial imaging by scanning electron microscopy. AgNPs addition to the LLDPE matrix did not interfere with the films' chemical and thermal properties and presented no significant migration to the external medium. For antimicrobial action, silver nanoparticles showed, in most concentrations, an inhibition percentage higher than 90% on all microorganisms studied, regardless of the carrier. However, a greater inhibitory action on S. aureus and between carriers was found, making hydroxyapatite more effective. The results indicated that nanostructured films with AgNPs + hydroxyapatite showed more promising antimicrobial action on microorganisms than AgNPs + silica, making hydroxyapatite with silver nanoparticle potentially useful in food packaging, improving safety and maintaining quality.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Antibacterianos/farmacologia , Antibacterianos/química , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Polietileno/química , Polietileno/farmacologia , Dióxido de Silício/farmacologia , Embalagem de Alimentos , Staphylococcus aureus , Durapatita/farmacologia , Anti-Infecciosos/farmacologia , Polímeros/farmacologia , Testes de Sensibilidade Microbiana , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Food Res Int ; 142: 110202, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33773677

RESUMO

Among the bioactive compounds that are considered important for the food industry, anthocyanins, which are flavonoid compounds presenting antioxidant activity and are responsible for beneficial health effects, have received researchers' attention in the last decades. In addition, anthocyanins are highly reactive and can be used as indicators of foodstuff quality conditions, particularly as a packaging ingredient. Considering this line of work, the eco-friendly film is a novel packaging technology that arose from the concern to reduce non-renewable resources and their impact on the environment. These films can be vehicles for loading bioactive compounds such as anthocyanins. Among the contribution of films in the food industry, we can highlight several potential applications: i) smart film: assess food quality and safety, transmitting food information to consumers and increasing the reliability of their consumption without breaking the packaging; ii) active film: use to preserve food quality through the release of active agents; and iii) bioactive film: carry substances in desired concentrations until their controlled or rapid diffusion within the gastrointestinal tract so that they can promote its benefit to human health. Thus, this review presents anthocyanin extract's potential as a powerful tool to improve the development of eco-friendly films, directing its purpose to the application as smart, active, and bioactive films.


Assuntos
Antocianinas , Polímeros , Antioxidantes , Embalagem de Alimentos , Humanos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA