Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 359: 142169, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38710416

RESUMO

With the increasing production and use of polyurethanes (PUs), it is necessary to develop sustainable techniques for the remediation of plastic pollution. The use of microorganisms capable of biodegrading PUs may be an environmentally desirable solution for controlling these plastic contaminants. To contribute to the discovery of alternatives for the mitigation of plastics in the environment, this study aimed to explore the potential of StaphylococcuswarneriUFV_01.21, isolated from the gut of Galleria mellonellalarvae, for biodegradation of PU in pure culture and microbial co-culture with Serratia liquefaciensL135. S. warneri grew using Impranil® PU as the sole carbon source in pure culture and co-culture. With six days of incubation, the biodegradation of Impranil® in Luria Bertani broth was 96, 88 and 76%, while in minimal medium, it was 58, 54 and 42% for S. warneri, S. liquefaciens, and co-culture, respectively. In addition, S. warneri in pure culture or co-culture was able to biodegrade, adhere and form biofilms on the surfaces of Impranil® disks and poly[4,4'-methylenebis (phenyl isocyanate)-alt-1,4-butanediol/di(propylene glycol)/polycaprolactone] (PCLMDI) films. Scanning electron microscopy also revealed biodegradation by detecting the formation of cracks, furrows, pores, and roughness on the surfaces of inoculated PU, both with pure culture and microbial co-culture. This study is the first to demonstrate the potential of S. warneriin PU biodegradation.


Assuntos
Biodegradação Ambiental , Técnicas de Cocultura , Poliuretanos , Staphylococcus , Poliuretanos/metabolismo , Staphylococcus/metabolismo , Biofilmes , Plásticos/metabolismo , Serratia liquefaciens/metabolismo
2.
Microbiology (Reading) ; 170(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38739436

RESUMO

Endolysins are bacteriophage (or phage)-encoded enzymes that catalyse the peptidoglycan breakdown in the bacterial cell wall. The exogenous action of recombinant phage endolysins against Gram-positive organisms has been extensively studied. However, the outer membrane acts as a physical barrier when considering the use of recombinant endolysins to combat Gram-negative bacteria. This study aimed to evaluate the antimicrobial activity of the SAR-endolysin LysKpV475 against Gram-negative bacteria as single or combined therapies, using an outer membrane permeabilizer (polymyxin B) and a phage, free or immobilized in a pullulan matrix. In the first step, the endolysin LysKpV475 in solution, alone and combined with polymyxin B, was tested in vitro and in vivo against ten Gram-negative bacteria, including highly virulent strains and multidrug-resistant isolates. In the second step, the lyophilized LysKpV475 endolysin was combined with the phage phSE-5 and investigated, free or immobilized in a pullulan matrix, against Salmonella enterica subsp. enterica serovar Typhimurium ATCC 13311. The bacteriostatic action of purified LysKpV475 varied between 8.125 µg ml-1 against Pseudomonas aeruginosa ATCC 27853, 16.25 µg ml-1 against S. enterica Typhimurium ATCC 13311, and 32.50 µg ml-1 against Klebsiella pneumoniae ATCC BAA-2146 and Enterobacter cloacae P2224. LysKpV475 showed bactericidal activity only for P. aeruginosa ATCC 27853 (32.50 µg ml-1) and P. aeruginosa P2307 (65.00 µg ml-1) at the tested concentrations. The effect of the LysKpV475 combined with polymyxin B increased against K. pneumoniae ATCC BAA-2146 [fractional inhibitory concentration index (FICI) 0.34; a value lower than 1.0 indicates an additive/combined effect] and S. enterica Typhimurium ATCC 13311 (FICI 0.93). A synergistic effect against S. enterica Typhimurium was also observed when the lyophilized LysKpV475 at ⅔ MIC was combined with the phage phSE-5 (m.o.i. of 100). The lyophilized LysKpV475 immobilized in a pullulan matrix maintained a significant Salmonella reduction of 2 logs after 6 h of treatment. These results demonstrate the potential of SAR-endolysins, alone or in combination with other treatments, in the free form or immobilized in solid matrices, which paves the way for their application in different areas, such as in biocontrol at the food processing stage, biosanitation of food contact surfaces and biopreservation of processed food in active food packing.


Assuntos
Antibacterianos , Endopeptidases , Glucanos , Polimixina B , Fagos de Salmonella , Endopeptidases/farmacologia , Endopeptidases/química , Endopeptidases/metabolismo , Polimixina B/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Fagos de Salmonella/genética , Fagos de Salmonella/fisiologia , Fagos de Salmonella/química , Glucanos/química , Glucanos/farmacologia , Animais , Testes de Sensibilidade Microbiana , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/virologia , Camundongos , Salmonella typhimurium/virologia , Salmonella typhimurium/efeitos dos fármacos , Bacteriófagos/fisiologia , Bacteriófagos/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais/farmacologia , Proteínas Virais/química
3.
Fungal Genet Biol ; 144: 103456, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32911061

RESUMO

Oleaginous yeasts have stood out due to their ability to accumulate oil, which can be used for fatty acid-derived biofuel production. Papiliotrema laurentii UFV-1 is capable of starting the lipid accumulation in the late exponential growth phase and achieves maximum lipid content at 48 h of growth; it is, therefore, interesting to study how its oleaginous phenotype is regulated. Herein, we provide for the first time insights into the regulation of this phenotype in P. laurentii UFV-1. We sequenced and assembled its genome, performed comparative genomic analyses and investigated its phylogenetic relationships with other yeasts. Gene expression and metabolomic analyses were carried out on the P. laurentii UFV-1 cultivated under a nitrogen-limiting condition. Our results indicated that the lipogenesis of P. laurentii might have taken place during evolution after the divergence of genera in the phylum Basidiomycota. Metabolomic data indicated the redirection of the carbon flux towards fatty acid synthesis in response to the nitrogen limitation. Furthermore, purine seems to be catabolized to recycle nitrogen and leucine catabolization may provide acetyl-CoA for fatty acid synthesis. Analyses of the expression of genes encoding certain enzymes involved with the oleaginous phenotype indicated that the NADP+-dependent malic enzyme seems to play an important role in the supply of NADPH for fatty acid synthesis. There was a surprising decrease in the expression of the ACC1 gene, which encodes acetyl-CoA carboxylase, during lipid accumulation. Taken together, our results provided a basis for understanding lipid accumulation in P. laurentii under nitrogen limiting conditions.


Assuntos
Basidiomycota/genética , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos/genética , Lipídeos/genética , Basidiomycota/metabolismo , Ácidos Graxos/genética , Regulação Fúngica da Expressão Gênica/genética , Nitrogênio/metabolismo , Fenótipo , Filogenia
4.
PLoS One ; 13(12): e0208789, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30562362

RESUMO

The bacterium Actinobacillus pleuropneumoniae is the etiological agent of Contagious Porcine Pleuropneumonia, a disease responsible for economic losses in the swine industry worldwide. A. pleuropneumoniae is capable of producing proteinaceous exotoxins responsible for inducing hemorrhagic lesions, one of which is ApxI. Few studies have conducted an in-depth evaluation of polymorphisms of the nucleotides that make up the ApxI toxin gene. Here we analyze the polymorphisms of the apxIA gene region of A. pleuropneumoniae serovar 5 isolated from swine in different regions in Brazil and report the results of molecular sequencing and phylogenetic analysis. Analysis of the apxIA gene in 60 isolates revealed the presence of genetic diversity and variability. The polymorphisms in the nucleotide sequences determined the grouping of the Brazilian sequences and five more sequences from the GenBank database into 14 different haplotypes, which formed three main groups and revealed the presence of mutations in the nucleotide sequences. The estimation of selection pressures suggests the occurrence of genetic variations by positive selective pressure on A. pleuropneumoniae in large groups of animals in relatively small spaces. These conditions presumably favor the horizontal dissemination of apxIA gene mutations within bacterial populations with host reservoirs. As a result, the same serovar can demonstrate different antigenic capacities due to mutations in the apxIA gene. These alterations in sequences of the apxIA gene could occur in other areas of countries with intense swine production, which could lead to differences in the pathogenicity and immunogenicity of each serovar and have implications for the clinical status or diagnosis of A. pleuropneumoniae.


Assuntos
Infecções por Acinetobacter/genética , Acinetobacter/genética , Genes Bacterianos , Pleuropneumonia Contagiosa/microbiologia , Polimorfismo Genético , Doenças dos Suínos/microbiologia , Suínos/microbiologia , Acinetobacter/isolamento & purificação , Acinetobacter/patogenicidade , Animais , Brasil , Mutação , Pleuropneumonia Contagiosa/genética , Doenças dos Suínos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA