Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Science ; 384(6694): 428-437, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38662827

RESUMO

A role for vitamin D in immune modulation and in cancer has been suggested. In this work, we report that mice with increased availability of vitamin D display greater immune-dependent resistance to transplantable cancers and augmented responses to checkpoint blockade immunotherapies. Similarly, in humans, vitamin D-induced genes correlate with improved responses to immune checkpoint inhibitor treatment as well as with immunity to cancer and increased overall survival. In mice, resistance is attributable to the activity of vitamin D on intestinal epithelial cells, which alters microbiome composition in favor of Bacteroides fragilis, which positively regulates cancer immunity. Our findings indicate a previously unappreciated connection between vitamin D, microbial commensal communities, and immune responses to cancer. Collectively, they highlight vitamin D levels as a potential determinant of cancer immunity and immunotherapy success.


Assuntos
Bacteroides fragilis , Microbioma Gastrointestinal , Inibidores de Checkpoint Imunológico , Neoplasias , Vitamina D , Animais , Feminino , Humanos , Masculino , Camundongos , Bacteroides fragilis/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/microbiologia , Neoplasias/terapia , Vitamina D/administração & dosagem , Vitamina D/metabolismo , Dieta , Linhagem Celular Tumoral , Calcifediol/administração & dosagem , Calcifediol/metabolismo , Proteína de Ligação a Vitamina D/genética , Proteína de Ligação a Vitamina D/metabolismo
2.
Nat Immunol ; 25(3): 448-461, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351322

RESUMO

Conventional dendritic cells (cDCs) include functionally and phenotypically diverse populations, such as cDC1s and cDC2s. The latter population has been variously subdivided into Notch-dependent cDC2s, KLF4-dependent cDC2s, T-bet+ cDC2As and T-bet- cDC2Bs, but it is unclear how all these subtypes are interrelated and to what degree they represent cell states or cell subsets. All cDCs are derived from bone marrow progenitors called pre-cDCs, which circulate through the blood to colonize peripheral tissues. Here, we identified distinct mouse pre-cDC2 subsets biased to give rise to cDC2As or cDC2Bs. We showed that a Siglec-H+ pre-cDC2A population in the bone marrow preferentially gave rise to Siglec-H- CD8α+ pre-cDC2As in tissues, which differentiated into T-bet+ cDC2As. In contrast, a Siglec-H- fraction of pre-cDCs in the bone marrow and periphery mostly generated T-bet- cDC2Bs, a lineage marked by the expression of LysM. Our results showed that cDC2A versus cDC2B fate specification starts in the bone marrow and suggest that cDC2 subsets are ontogenetically determined lineages, rather than cell states imposed by the peripheral tissue environment.


Assuntos
Células Dendríticas , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Animais , Camundongos , Diferenciação Celular
3.
Cell Rep ; 42(8): 112881, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37523265

RESUMO

Conventional dendritic cells (cDCs) are found in most tissues and play a key role in initiation of immunity. cDCs require constant replenishment from progenitors called pre-cDCs that develop in the bone marrow (BM) and enter the blood circulation to seed all tissues. This process can be markedly accelerated in response to inflammation (emergency cDCpoiesis). Here, we identify two populations of BM pre-cDC marked by differential expression of CXCR4. We show that CXCR4lo cells constitute the migratory pool of BM pre-cDCs, which exits the BM and can be rapidly mobilized during challenge. We further show that exit of CXCR4lo pre-cDCs from BM at steady state is partially dependent on CCR2 and that CCR2 upregulation in response to type I IFN receptor signaling markedly increases efflux during infection with influenza A virus. Our results highlight a fine balance between retention and efflux chemokine cues that regulates steady-state and emergency cDCpoiesis.


Assuntos
Medula Óssea , Células Dendríticas , Receptores CCR2 , Receptores CXCR4 , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Células Dendríticas/metabolismo , Inflamação/metabolismo , Receptores CCR2/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais , Animais
4.
Annu Rev Immunol ; 39: 131-166, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33481643

RESUMO

Dendritic cells (DCs) possess the ability to integrate information about their environment and communicate it to other leukocytes, shaping adaptive and innate immunity. Over the years, a variety of cell types have been called DCs on the basis of phenotypic and functional attributes. Here, we refocus attention on conventional DCs (cDCs), a discrete cell lineage by ontogenetic and gene expression criteria that best corresponds to the cells originally described in the 1970s. We summarize current knowledge of mouse and human cDC subsets and describe their hematopoietic development and their phenotypic and functional attributes. We hope that our effort to review the basic features of cDC biology and distinguish cDCs from related cell types brings to the fore the remarkable properties of this cell type while shedding some light on the seemingly inordinate complexity of the DC field.


Assuntos
Células Dendríticas , Imunidade Inata , Animais , Linhagem da Célula , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA