Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomedicines ; 11(2)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36830888

RESUMO

The aim of the study was to investigate the dynamics of the state of allo- and autografts of skin on a wound using optical modalities: diffuse reflectance spectroscopy (DRS), optical coherence tomography (OCT), and laser Doppler flowmetry (LDF). A deep thermal burn was simulated in 24 rats covering 20% of the body surface. On day 3 after the injury, a fascial necrectomy of two 500 mm2 areas on the left and right sides of the midline of the animal body were excised. Allografts and autografts were placed in the centers of these areas. Optical measurements of grafts were performed on the 0, 3rd, 6th, 10th, and 13th days after transplantation. The allografts demonstrated a pronounced decrease in oxygenation, blood content, and perfusion compared to autografts on the 6th day; in the following days of observation, these values returned to the average values of autografts. Water content gradually decreased from the beginning to the end of observation. In conclusion, optical diagnostics revealed changes in the morphological microstructure, the rate of restoration of blood circulation, and oxygen exchange in the early stages, specific for the allo- and autograft.

2.
Diagnostics (Basel) ; 13(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36766562

RESUMO

We report on the comparative analysis of self-calibrating and single-slope diffuse reflectance spectroscopy in resistance to different measurement perturbations. We developed an experimental setup for diffuse reflectance spectroscopy (DRS) in a wide VIS-NIR range with a fiber-optic probe equipped with two source and two detection fibers capable of providing measurements employing both single- and dual-slope (self-calibrating) approaches. In order to fit the dynamic range of a spectrometer in the wavelength range of 460-1030 nm, different exposure times have been applied for short (2 mm) and long (4 mm) source-detector distances. The stability of the self-calibrating and traditional single-slope approaches to instrumental perturbations were compared in phantom and in vivo studies on human palm, including attenuations in individual channels, fiber curving, and introducing optical inhomogeneities in the probe-tissue interface. The self-calibrating approach demonstrated high resistance to instrumental perturbations introduced in the source and detection channels, while the single-slope approach showed resistance only to perturbations introduced into the source channels.

3.
Cancers (Basel) ; 13(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34830963

RESUMO

Fluorescence imaging modalities are currently a routine tool for the assessment of marker distribution within biological tissues, including monitoring of fluorescent photosensitizers (PSs) in photodynamic therapy (PDT). Conventional fluorescence imaging techniques provide en-face two-dimensional images, while depth-resolved techniques require complicated tomographic modalities. In this paper, we report on a cost-effective approach for the estimation of fluorophore localization depth based on dual-wavelength probing. Owing to significant difference in optical properties of superficial biotissues for red and blue ranges of optical spectra, simultaneous detection of fluorescence excited at different wavelengths provides complementary information from different measurement volumes. Here, we report analytical and numerical models of the dual-wavelength fluorescence imaging of PS-containing biotissues considering topical and intravenous PS administration, and demonstrate the feasibility of this approach for evaluation of the PS localization depth based on the fluorescence signal ratio. The results of analytical and numerical simulations, as well as phantom experiments, were translated to the in vivo imaging to interpret experimental observations in animal experiments, human volunteers, and clinical studies. The proposed approach allowed us to estimate typical accumulation depths of PS localization which are consistent with the morphologically expected values for both topical PS administration and intravenous injection.

4.
Cancers (Basel) ; 14(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35008362

RESUMO

The newly developed multimodal imaging system combining raster-scan optoacoustic (OA) microscopy and fluorescence (FL) wide-field imaging was used for characterizing the tumor vascular structure with 38/50 µm axial/transverse resolution and assessment of photosensitizer fluorescence kinetics during treatment with novel theranostic agents. A multifunctional photoactivatable multi-inhibitor liposomal (PMILs) nano platform was engineered here, containing a clinically approved photosensitizer, Benzoporphyrin derivative (BPD) in the bilayer, and topoisomerase I inhibitor, Irinotecan (IRI) in its inner core, for a synergetic therapeutic impact. The optimized PMIL was anionic, with the hydrodynamic diameter of 131.6 ± 2.1 nm and polydispersity index (PDI) of 0.05 ± 0.01, and the zeta potential between -14.9 ± 1.04 to -16.9 ± 0.92 mV. In the in vivo studies on BALB/c mice with CT26 tumors were performed to evaluate PMILs' therapeutic efficacy. PMILs demonstrated the best inhibitory effect of 97% on tumor growth compared to the treatment with BPD-PC containing liposomes (PALs), 81%, or IRI containing liposomes (L-[IRI]) alone, 50%. This confirms the release of IRI within the tumor cells upon PMILs triggering by NIR light, which is additionally illustrated by FL monitoring demonstrating enhancement of drug accumulation in tumor initiated by PDT in 24 h after the treatment. OA monitoring revealed the largest alterations of the tumor vascular structure in the PMILs treated mice as compared to BPD-PC or IRI treated mice. The results were further corroborated with histological data that also showed a 5-fold higher percentage of hemorrhages in PMIL treated mice compared to the control groups. Overall, these results suggest that multifunctional PMILs simultaneously delivering PDT and chemotherapy agents along with OA and FL multi-modal imaging offers an efficient and personalized image-guided platform to improve cancer treatment outcomes.

5.
J Biomed Opt ; 23(9): 1-11, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30066503

RESUMO

We propose a hybrid approach to image enhancement in acoustic resolution photoacoustic microscopy. The developed technique is based on compensation for nonuniform spatial sensitivity of the optoacoustic (OA) system in both optical and acoustic domains. Spatial distribution of optical fluence is derived from full three-dimensional Monte Carlo simulations accounting for conical geometry of tissue laser illumination at the wavelength of 532 nm. Approximate nonuniform spatial response of acoustic detector with numerical aperture of 0.6 is derived from the two-dimensional k-Wave modeling. Application of the developed technique allows to improve the spatial resolution and to balance in-depth signal-level distribution in OA images of phantom and in-vivo objects.


Assuntos
Microscopia Acústica/métodos , Técnicas Fotoacústicas/métodos , Adulto , Algoritmos , Feminino , Mãos/irrigação sanguínea , Mãos/diagnóstico por imagem , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Processamento de Sinais Assistido por Computador , Pele/irrigação sanguínea , Pele/diagnóstico por imagem , Adulto Jovem
6.
Photoacoustics ; 8: 59-67, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29034169

RESUMO

Modern optical imaging techniques demonstrate significant potential for high resolution in vivo angiography. Optoacoustic angiography benefits from higher imaging depth as compared to pure optical modalities. However, strong attenuation of optoacoustic signal with depth provides serious challenges for adequate 3D vessel net mapping, and proper compensation for fluence distribution within biotissues is required. We report on the novel approach allowing to estimate effective in-depth fluence profiles for optoacoustic systems. Calculations are based on Monte Carlo simulation of light transport and account for complex illumination geometry and acoustic detection parameters. The developed fluence compensation algorithm was tested in in vivo angiography of human palm and allowed to overcome significant in-depth attenuation of probing radiation and enhance the contrast of lower dermis plexus while preserving high resolution of upper plexus imaging.

7.
Biomed Opt Express ; 7(10): 3979-3995, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27867709

RESUMO

The non-invasive measurement of blood oxygen saturation in blood vessels is a promising clinical application of optoacoustic imaging. Nevertheless, precise optoacoustic measurements of blood oxygen saturation are limited because of the complexities of calculating the spatial distribution of the optical fluence. In the paper error in the determination of blood oxygen saturation, associated with the use of approximate methods of optical fluence evaluation within the blood vessel, was investigated for optoacoustic measurements at two wavelengths. The method takes into account both acoustic pressure noise and the error in determined values of the optical scattering and absorption coefficients used for the calculation of the fluence. It is shown that, in conditions of an unknown (or partially known) spatial distribution of fluence at depths of 2 to 8 mm, minimal error in the determination of blood oxygen saturation is achieved at wavelengths of 658 ± 40 nm and 1069 ± 40 nm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA