Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Waste Manag ; 107: 9-19, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32248068

RESUMO

This paper investigated the effect of alkaline hydrothermal pretreatment (HTP) on the hydrolysis, biodegradation and methane generation potential of waste activated sludge (WAS). A multi-variable experimental approach was designed, where initial solids content (1-5%), reaction temperature (130-190 °C), reaction time (10-30 min.) and caustic concentration (0-0.2 mgNaOH/mgVS) were varied in different combinations to assess the impact of alkaline HTP. This process significantly enhanced the hydrolysis of organic compounds in sludge into soluble fractions, whereby increasing the chemical oxygen demand (COD) leakage up to 200-900% with the 17-99% solubility. It boosted volatile solids (VS) biodegradation up to 40%, which resulted in a parallel increase in methane generation from 216 mLCH4/gVS to as high a 456 mLCH4/gVS methane generation basically relied on the conversion of solubilized COD. Alkaline HTP process was optimized for the maximum methane production. Optimum conditions were obtained at 190 °C reaction temperature, 10 min. reaction time, 0.2 mgNaOH/mgVS and 5% dry matter content. Under these conditions, 453.8 mLCH4/gVS was predicted. Biochemical methane potential (BMP) value was determined as 464 mLCH4/gVS supporting predictive power of the BMP model. The biodegradability compared to the untreated raw WAS was enhanced 78.2%.


Assuntos
Metano , Esgotos , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Hidrólise
2.
Bioresour Technol ; 281: 209-216, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30822642

RESUMO

Twenty one species of microalgae and Cyanobacteria were isolated from different ecosystems in Turkey to investigate the relation between biochemical methane potential (BMP) and biochemical characterization. Since the highest dry weight (X), specific growth rate (µ) and maximum productivity (Pmax) were obtained from the five species, identification of species and BMP tests with the composition analyzes were examined. BMP values were determined 308, 293, 242, 229 and 230 mLCH4/gVS for Desertifilum tharense, Phormidium animale, Chlorella sp., Anabeana variabilis and Chlorophyta uncultured. The Pearson correlation and principal component analysis (PCA) were applied to extract and clarify the correlation between composition of species and their methane production. Pearson correlation shows that glucose, Kjeldahl nitrogen and chlorophyll are highly and positively correlated with BMP. PCA revealed that Chlorella sp., Chlorophyta uncultured and Desertifilum tharense were placed against Phormidium animale distinguished by its extreme and different profile because of Kjeldahl nitrogen and glucose content.


Assuntos
Biocombustíveis , Cianobactérias/metabolismo , Microalgas/metabolismo , Anaerobiose , Metano/metabolismo , Nitrogênio/análise , Turquia
3.
Environ Sci Process Impacts ; 18(2): 277-88, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26767436

RESUMO

In this study, long and short term inhibition impacts of Ag, CuO and CeO2 nanoparticles (NPs) on anaerobic digestion (AD) of waste activated sludge (WAS) were investigated. CuO NPs were detected as the most toxic NPs on AD. As the CuO NP concentration increased from 5 to 1000 mg per gTS, an increase in the inhibition of AD from 5.8 to 84.0% was observed. EC50 values of short and long term inhibitions were calculated as 224.2 mgCuO per gTS and 215.1 mgCuO per gTS, respectively. Ag and CeO2 NPs did not cause drastic impacts on AD as compared to CuO NPs. In the long term test, Ag NPs created 12.1% decrease and CeO2 NPs caused 9.2% increase in the methane production from WAS at the highest dosage. FISH imaging also revealed that the abundance of Archaea in raw WAS was similar in short and long term tests carried out with WAS containing Ag and CeO2 NPs. On the other hand, CuO NPs caused inhibition of Archaea in the long term test. Digestion kinetics of WAS containing Ag, CeO2, CuO NPs were also evaluated with Gompertz, Logistic, Transference and First Order models. The hydrolysis rate constant (kH) for each concentration of Ag and CeO2 NPs and the raw WAS was 0.027745 d(-1) while the kH of WAS containing high concentrations of CuO NPs was found to be 0.001610 d(-1).


Assuntos
Cério/química , Cobre/química , Ouro/química , Nanopartículas/química , Esgotos/química , Oligoelementos/química , Anaerobiose , Cidades , Eliminação de Resíduos , Fatores de Tempo , Turquia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA