Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0301343, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38833478

RESUMO

The dinoflagellate Alexandrium catenella is a well-known paralytic shellfish toxin producer that forms harmful algal blooms, repeatedly causing damage to Chilean coastal waters. The causes and behavior of algal blooms are complex and vary across different regions. As bacterial interactions with algal species are increasingly recognized as a key factor driving algal blooms, the present study identifies several bacterial candidates potentially associated with Chilean Alexandrium catenella. This research narrowed down the selection of bacteria from the Chilean A. catenella culture using antibiotic treatment and 16S rRNA metabarcoding analysis. Subsequently, seawater from two Chilean coastal stations, Isla Julia and Isla San Pedro, was monitored for two years to detect Alexandrium species and the selected bacteria, utilizing 16S and 18S rRNA gene metabarcoding analyses. The results suggested a potential association between Alexandrium species and Spongiibacteraceae at both stations. The proposed candidate bacteria within the Spongiibacteraceae family, potentially engaging in mutualistic relationships with Alexandrium species, included the genus of BD1-7 clade, Spongiibbacter, and Zhongshania.


Assuntos
Dinoflagellida , RNA Ribossômico 16S , Simbiose , Dinoflagellida/genética , Dinoflagellida/fisiologia , Chile , RNA Ribossômico 16S/genética , Bactérias/genética , Bactérias/classificação , Proliferação Nociva de Algas , Água do Mar/microbiologia , Filogenia , RNA Ribossômico 18S/genética
2.
Sci Total Environ ; 928: 172374, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38615760

RESUMO

The Reloncaví estuary in southern Chile is famous for its aquaculture. However, recurring harmful algal blooms have adversely affected mussel production. Therefore, regular monitoring of algal toxins is urgently needed to better understand the contamination status of the estuary. In this study, we quantified 15 types of lipophilic shellfish toxins in Metri Bay in the Reloncaví estuary on a biweekly basis for 4 years. We identified algal species using microscopy and metabarcoding analysis. We also measured water temperature, salinity, chlorophyll-a, and dissolved oxygen to determine the potential relationships of these parameters with algal toxin production. Our results revealed the presence of a trace amount of pectenotoxin and the causal phytoplankton Dinophysis, as well as yessotoxin and the causal phytoplankton Protoceratium. Statistical analysis indicated that fluctuations in water temperature affected the detection of these toxins. Additionally, metabarcoding analysis detected the highly toxic phytoplankton Alexandrium spp. in some samples. Although our results suggest that the level of lipophilic shellfish toxins in Metri Bay during the study period was insignificantly low using our current LC-MS method, the confirmed presence of highly toxic algae in Metri Bay raises concerns, given that favorable environmental conditions could cause blooms.


Assuntos
Monitoramento Ambiental , Estuários , Proliferação Nociva de Algas , Toxinas Marinhas , Fitoplâncton , Chile , Toxinas Marinhas/análise , Animais , Dinoflagellida
3.
J Indian Inst Sci ; : 1-11, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37362849

RESUMO

Bioaerosols play essential roles in the atmospheric environment and can affect human health. With a few exceptions (e.g., farm or rainforest environments), bioaerosol samples from wide-ranging environments typically have a low biomass, including bioaerosols from indoor environments (e.g., residential homes, offices, or hospitals), outdoor environments (e.g., urban or rural air). Some specialized environments (e.g., clean rooms, the Earth's upper atmosphere, or the international space station) have an ultra-low-biomass. This review discusses the primary sources of bioaerosols and influencing factors, the recent advances in air sampling techniques and the new generation sequencing (NGS) methods used for the characterization of low-biomass bioaerosol communities, and challenges in terms of the bias introduced by different air samplers when samples are subjected to NGS analysis with a focus on ultra-low biomass. High-volume filter-based or liquid-based air samplers compatible with NGS analysis are required to improve the bioaerosol detection limits for microorganisms. A thorough understanding of the performance and outcomes of bioaerosol sampling using NGS methods and a robust protocol for aerosol sample treatment for NGS analysis are needed. Advances in NGS techniques and bioinformatic tools will contribute toward the precise high-throughput identification of the taxonomic profiles of bioaerosol communities and the determination of their functional and ecological attributes in the atmospheric environment. In particular, long-read amplicon sequencing, viability PCR, and meta-transcriptomics are promising techniques for discriminating and detecting pathogenic microorganisms that may be active and infectious in bioaerosols and, therefore, pose a threat to human health. Supplementary Information: The online version contains supplementary material available at 10.1007/s41745-023-00380-x.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA