Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Front Bioeng Biotechnol ; 11: 1250667, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771573

RESUMO

Solid State Fermentation (SSF) processes have been explored for yeast growth and protein and metabolites production. However, most of these processes lack standardization. In this work, we present a polylactic acid (PLA) 3D printed matrix that dramatically enhances yeast growth when embedded in liquid media compared to equivalent static cultures, and changes yeast expression patterns at the proteome level (data are available via ProteomeXchange with identifier PXD043759). Moreover, differences in sugar assimilation and ethanol production, as the main product of alcoholic fermentation, are observed. Our results suggest that these matrixes may be useful for a vast range of biotechnological applications based on yeast fermentation.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37565577

RESUMO

A novel Gram-reaction-negative, facultatively anaerobic, rod-shaped, non-motile, non-spore forming, orange-pigmented bacterium identified as M10.2AT, was isolated from marine residues submerged on the Malva-rosa beach (València, Spain), on the western coast of the Mediterranean Sea. This strain was catalase-positive and oxidase-negative and grew under mesophilic, neutrophilic and halophilic conditions. With respect to the 16S rRNA gene sequences, M10.2AT showed similarities with Gillisia mitskevichiae DSM 19839T and Gillisia hiemivida IC154T (97.57 and 97.50 % gene sequence similarity, respectively). The genome of M10.2AT was sequenced and has been deposited in the DDBJ/ENA/GenBank databases under the accession code JAKGTH000000000. The genomic DNA G+C content was 36.13 %. Its adscription to a novel species of the genus Gillisia was confirmed by the genomic indexes average nucleotide identity by blast (ANIb) and digital DNA-DNA hybridisation (dDDH). The major fatty acids were iso-C15 : 0, iso-C15 : 1G, iso-C16 : 0 3-OH, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1ω7c/C16 : 1ω6c). According to the results of this polyphasic study, strain M10.2AT represents a novel species of the genus Gillisia, for which name Gillisia lutea sp. nov. (type strain M10.2AT = CECT 30308T = DSM 112385T) is proposed.


Assuntos
Alumínio , Ácidos Graxos , Ácidos Graxos/química , RNA Ribossômico 16S/genética , Mar Mediterrâneo , DNA Bacteriano/genética , Análise de Sequência de DNA , Composição de Bases , Filogenia , Técnicas de Tipagem Bacteriana , Vitamina K 2/química
3.
Artigo em Inglês | MEDLINE | ID: mdl-36748519

RESUMO

A novel Gram-reaction-negative, aerobic, motile, rod-shaped, grey bacterium, strain P4.10XT, was isolated from plastic debris sampled from shallow waters in the Mediterranean Sea (Valencia, Spain). P4.10XT was catalase- and oxidase-positive, and grew under mesophilic, neutrophilic and halophilic conditions. The 16S rRNA gene sequences revealed that P4.10XT was closely related to Maritalea myrionectae DSM 19524T and Maritalea mobilis E6T (98.25 and 98.03 % sequence similarity, respectively). The DNA G+C content of the genome sequence of P4.10XT was 53.66 %. The genomic indexes average nucleotide identity by blast (ANIb) and digital DNA-DNA hybridization (dDDH) confirmed its classification as representing a novel species of the genus Maritalea. The predominant fatty acids were summed feature 8 (C18 : 1ω7c/C18 : 1ω6c) and C18 : 1 ω7c 11-methyl. The results of this polyphasic study confirm that P4.10XT represents a novel species of the genus Maritalea, for which the name Maritalea mediterranea sp. nov. is proposed (type strain P4.10XT=CECT 30306T = DSM 112386T).


Assuntos
Alphaproteobacteria , Filogenia , Alphaproteobacteria/classificação , Alphaproteobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Mediterranea , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Poluentes da Água , Plásticos , Mar Mediterrâneo
4.
NPJ Biofilms Microbiomes ; 8(1): 32, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484166

RESUMO

Bioprospecting of microorganisms suitable for bioremediation of fuel or oil spills is often carried out in contaminated environments such as gas stations or polluted coastal areas. Using next-generation sequencing (NGS) we analyzed the microbiota thriving below the lids of the fuel deposits of diesel and gasoline cars. The microbiome colonizing the tank lids differed from the diversity found in other hydrocarbon-polluted environments, with Proteobacteria being the dominant phylum and without clear differences between gasoline or diesel-fueled vehicles. We observed differential growth when samples were inoculated in cultures with gasoline or diesel as the main carbon source, as well as an increase in the relative abundance of the genus Pseudomonas in diesel. A collection of culturable strains was established, mostly Pseudomonas, Stenotrophomonas, Staphylococcus, and Bacillus genera. Strains belonging to Bacillus, Pseudomonas, Achromobacter, and Isoptericola genera showed a clear diesel degradation pattern when analyzed by GC-MS, suggesting their potential use for bioremediation and a possible new species of Isoptericola was further characterized as hydrocarbon degrader.


Assuntos
Automóveis , Gasolina , Bactérias/genética , Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-35258448

RESUMO

A novel Gram-stain-negative, non-motile, halophilic bacterium designated strain M10.9XT was isolated from the inner sediment of an aluminium can collected from the Mediterranean Sea (València, Spain). Cells of strain M10.9XT were rod-shaped and occasionally formed aggregates. The strain was oxidase-negative and catalase-positive, and showed a slightly psychrophilic, neutrophilic and slightly halophilic metabolism. The phylogenetic analyses revealed that strain M10.9XT was closely related to Sagittula stellata E-37T and Sagittula marina F028-2T. The genomic G+C content of strain M10.9XT was 65.2 mol%. The average nucleotide identity and digital DNA-DNA hybridization values were 76.6 and 20.9 %, respectively, confirming its adscription to a new species within the genus Sagittula. The major cellular fatty acids were C18 : 1 ω7c/C18 : 1 ω6c and C16 : 0. The polar lipids consisted of phosphatidylglycerol, phosphatidylethanolamine, an unidentified aminolipid, an unidentified glycolipid, an unidentified phospholipid and an unidentified lipid. According to the resuts of a polyphasic study, strain M10.9XT represents a novel species of the genus Sagittula for which the name Sagittula salina sp. nov. (type strain M10.9XT=DSM 112301T=CECT 30307T) is proposed.


Assuntos
Alphaproteobacteria/classificação , Filogenia , Alphaproteobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Glicolipídeos/química , Mar Mediterrâneo , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Poluentes da Água
6.
Microbiologyopen ; 11(1): e1259, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35212483

RESUMO

Ocean pollution is a worldwide environmental challenge that could be partially tackled through microbial applications. To shed light on the diversity and applications of the bacterial communities that inhabit the sediments trapped in artificial containers, we analyzed residues (polyethylene terephthalate [PET] bottles and aluminum cans) collected from the Mediterranean Sea by scanning electron microscopy and next generation sequencing. Moreover, we set a collection of culturable bacteria from the plastisphere that were screened for their ability to use PET as a carbon source. Our results reveal that Proteobacteria are the predominant phylum in all the samples and that Rhodobacteraceae, Woeseia, Actinomarinales, or Vibrio are also abundant in these residues. Moreover, we identified marine isolates with enhanced growth in the presence of PET: Aquimarina intermedia, Citricoccus spp., and Micrococcus spp. Our results suggest that the marine environment is a source of biotechnologically promising bacterial isolates that may use PET or PET additives as carbon sources.


Assuntos
Actinobacteria/crescimento & desenvolvimento , Bacteroidetes/crescimento & desenvolvimento , Sedimentos Geológicos/microbiologia , Polietilenotereftalatos , Proteobactérias/crescimento & desenvolvimento , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Actinobacteria/ultraestrutura , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Bacteroidetes/ultraestrutura , Biodegradação Ambiental , Biologia Computacional , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Microscopia Eletrônica de Varredura , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Proteobactérias/ultraestrutura , RNA Ribossômico 16S/síntese química , Resíduos
7.
Microorganisms ; 9(12)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34946057

RESUMO

The highly xerotolerant bacterium classified as Exiguobacterium sp. Helios isolated from a solar panel in Spain showed a close relationship to Exiguobacterium sibiricum 255-15 isolated from Siberian permafrost. Xerotolerance has not been previously described as a characteristic of the extremely diverse Exiguobacterium genus, but both strains Helios and 255-15 showed higher xerotolerance than that described in the reference xerotolerant model strain Deinococcus radiodurans. Significant changes observed in the cell morphology after their desiccation suggests that the structure of cellular surface plays an important role in xerotolerance. Apart from its remarkable resistance to desiccation, Exiguobacterium sp. Helios strain shows several polyextremophilic characteristics that make it a promising chassis for biotechnological applications. Exiguobacterium sp. Helios cells produce nanoparticles of selenium in the presence of selenite linked to its resistance mechanism. Using the Lactobacillus plasmid pRCR12 that harbors a cherry marker, we have developed a transformation protocol for Exiguobacterium sp. Helios strain, being the first time that a bacterium of Exiguobacterium genus has been genetically modified. The comparison of Exiguobacterium sp. Helios and E. sibiricum 255-15 genomes revealed several interesting similarities and differences. Both strains contain a complete set of competence-related DNA transformation genes, suggesting that they might have natural competence, and an incomplete set of genes involved in sporulation; moreover, these strains not produce spores, suggesting that these genes might be involved in xerotolerance.

8.
Artigo em Inglês | MEDLINE | ID: mdl-34292142

RESUMO

Two novel Gram-staining-negative, aerobic, cocci-shaped, non-motile, non-spore forming, pink-pigmented bacteria designated strains T6T and T18T, were isolated from a biocrust (biological soil crust) sample from the vicinity of the Tabernas Desert (Spain). Both strains were catalase-positive and oxidase-negative, and grew under mesophilic, neutrophilic and non-halophilic conditions. According to the 16S rRNA gene sequences, strains T6T and T18T showed similarities with Belnapia rosea CGMCC 1.10758T and Belnapia moabensis CP2CT (98.11 and 98.55% gene sequence similarity, respectively). The DNA G+C content was 69.80 and 68.96% for strains T6T and T18T, respectively; the average nucleotide identity by blast (ANIb) and digital DNA-DNA hybridization (dDDH) values confirmed their adscription to two novel species within the genus Belnapia. The predominant fatty acids were summed feature 8 (C18 : 1ω7c/C18 : 1ω6c), C16 : 0, C18 : 1 2-OH and summed feature 3 (C16 : 1ω7c/C16 : 1ω6c). According to he results of the polyphasic study, strains T6T and T18T represent two novel species in the genus Belnapia (which currently includes only three species), for which names Belnapia mucosa sp. nov. (type strain T6T = CECT 30228T=DSM 112073T) and Belnapia arida sp. nov. (type strain T18T=CECT 30229T=DSM 112074T) are proposed, respectively.


Assuntos
Acetobacteraceae/classificação , Clima Desértico , Filogenia , Microbiologia do Solo , Acetobacteraceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espanha
9.
Biosystems ; 204: 104408, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33744400

RESUMO

The publication in the late 1960s of Lynn Margulis endosymbiotic proposal is a scientific milestone that brought to the fore of evolutionary discussions the issue of the origin of nucleated cells. Although it is true that the times were ripe, the timely publication of Lynn Margulis' original paper was the product of an intellectually bold 29-years old scientist, who based on the critical analysis of the available scientific information produced an all-encompassing, sophisticated narrative scheme on the origin of eukaryotic cells as a result of the evolution of prokaryotic consortia and, in bold intellectual stroke, put it all in the context of planetary evolution. A critical historical reassessment of her original proposal demonstrates that her hypothesis was not a simple archival outline of past schemes, but a renewed historical narrative of prokaryotic evolution and the role of endosymbiosis in the origin of eukaryotes. Although it is now accepted that the closest bacterial relatives of mitochondria and plastids are α-proteobacteria and cyanobacteria, respectively, comparative genomics demonstrates the mosaic character of the organelle genomes. The available evidence has completely refuted Margulis' proposal of an exogenous origin for eukaryotic flagella, the (9 + 2) basal bodies, and centromeres, but we discuss in detail the reasons that led her to devote considerable efforts to argue for a symbiotic origin of the eukaryotic motility. An analysis of the arguments successfully employed by Margulis in her persuasive advocacy of endosymbiosis, combined with the discussions of her flaws and the scientific atmosphere during the period in which she formulated her proposals, are critical for a proper appraisal of the historical conditions that shaped her theory and its acceptance.


Assuntos
Evolução Biológica , Células Eucarióticas , Células Procarióticas , Simbiose , Corpos Basais , Movimento Celular , Centrômero , Flagelos , Genoma Mitocondrial , Genomas de Plastídeos , Consórcios Microbianos , Organelas/genética
10.
Microb Biotechnol ; 14(1): 41-44, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33119190

Assuntos
Biotecnologia
11.
Microorganisms ; 8(10)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036385

RESUMO

Three novel Gram-positive, aerobic, chemoheterotrophic, motile, non-endospore-forming, orange-pigmented bacteria designated strains T13T, T90T and R8T were isolated from the Tabernas Desert biocrust (Almería, Spain). Cells of the three strains were coccus-shaped and occurred singly, in pairs or clusters. The three strains were oxidase-negative and catalase-positive, and showed a mesophilic, neutrophilic and non-halophilic metabolism. Based on the 16S rRNA gene sequences, the closest neighbours of strains T13T, T90T and R8T were Kineococcus aurantiacus IFO 15268T, Kineococcus gypseus YIM 121300T and Kineococcus radiotolerans SRS 30216T (98.5%, 97.1% and 97.9% gene sequence similarity, respectively). The genomes were sequenced, and have been deposited in the GenBank/EMBL/DDBJ databases under the accession numbers JAAALL000000000, JAAALM000000000 and JAAALN000000000, respectively, for strains T13T, T90T and R8T. The average nucleotide identity (ANIb) and digital DNA-DNA hybridization (dDDH) values confirmed their adscription to three new species within the genus Kineococcus. The genomic G + C content of strains T13T, T90T and R8T ranged from 75.1% to 76.3%. The predominant fatty acid of all three strains was anteiso-C15:0. According to a polyphasic study, strains T13T, T90T and R8T are representatives of three new species in the genus Kineococcus, for which names Kineococcus vitellinus sp. nov. (type strain T13T = CECT 9936T = DSM 110024T), Kineococcus indalonis sp. nov. (type strain T90T = CECT 9938T = DSM 110026T) and Kineococcus siccus sp. nov. (type strain R8T = CECT 9937T = DSM 110025T) are proposed.

12.
Microb Biotechnol ; 13(6): 1819-1830, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32613706

RESUMO

Solar panel surfaces can be colonized by microorganisms adapted to desiccation, temperature fluctuations and solar radiation. Although the taxonomic and functional composition of these communities has been studied, the microbial colonization process remains unclear. In the present work, we have monitored this microbial colonization process during 24 months by performing weekly measurements of the photovoltaic efficiency, carrying out 16S rRNA gene high-throughput sequencing, and studying the effect of antimicrobial compounds on the composition of the microbial biocenosis. This is the first time a long-term study of the colonization process of solar panels has been performed, and our results reveal that species richness and biodiversity exhibit seasonal fluctuations and that there is a trend towards an increase or decrease of specialist (solar panel-adapted) and generalist taxa, respectively. On the former, extremophilic bacterial genera Deinococcus, Hymenobacter and Roseomonas and fungal Neocatenulostroma, Symmetrospora and Sporobolomyces tended to dominate the biocenosis; whereas Lactobacillus sp or Stemphyllium exhibited a decreasing trend. This profile was deeply altered by washing the panels with chemical agents (Virkon), but this did not lead to an increase of the solar panels efficiency. Our results show that solar panels are extreme environments that force the selection of a particular microbial community.


Assuntos
Extremófilos , Microbiota , Bactérias/genética , Biodiversidade , Filogenia , RNA Ribossômico 16S/genética
14.
Int J Syst Evol Microbiol ; 70(3): 1814-1821, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31951194

RESUMO

Solar panel surfaces, although subjected to a range of extreme environmental conditions, are inhabited by a diverse microbial community adapted to solar radiation, desiccation and temperature fluctuations. This is the first time a new bacterial species has been isolated from this environment. Strain R4DWNT belongs to the genus Sphingomonas and was isolated from a solar panel surface in Boston, MA, USA. Strain R4DWNT is a Gram-negative, non-motile and rod-shaped bacteria that tested positive for oxidase and catalase and forms round-shaped, shiny and orange-coloured colonies. It is mesophilic, neutrophilic and non-halophilic, and presents a more stenotrophic metabolism than its closest neighbours. The major fatty acids in this strain are C18:1ω7c/C18:1ω6c, C16:1ω7c/C16:1ω6c, C14:0 2OH and C16:0. Comparison of 16S rRNA gene sequences revealed that the closest type strains to R4DWNT are Sphingomonas fennica, Sphingomonas formosensis, Sphingomonas prati, Sphingomonas montana and Sphingomonas oleivorans with 96.3, 96.1, 96.0, 95.9 and 95.7 % pairwise similarity, respectively. The genomic G+C content of R4DWNT is 67.9 mol%. Based on these characteristics, strain R4DWNT represents a novel species of the genus Sphingomonas for which the name Sphingomonas solaris sp. nov. is proposed with the type strain R4DWNT (=CECT 9811T=LMG 31344T).


Assuntos
Filogenia , Energia Solar , Sphingomonas/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Boston , DNA Bacteriano/genética , Ácidos Graxos/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sphingomonas/isolamento & purificação
15.
Front Microbiol ; 11: 583120, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488536

RESUMO

One of the most diverse ecological niches for microbial bioprospecting is soil, including that of drylands. Drylands are one of the most abundant biomes on Earth, but extreme cases, such as deserts, are considered very rare in Europe. The so-called Tabernas Desert is one of the few examples of a desert area in continental Europe, and although some microbial studies have been performed on this region, a comprehensive strategy to maximize the isolation of environmental bacteria has not been conducted to date. We report here a culturomics approach to study the bacterial diversity of this dryland by using a simple strategy consisting of combining different media, using serial dilutions of the nutrients, and using extended incubation times. With this strategy, we were able to set a large (254 strains) collection of bacteria, the majority of which (93%) were identified through 16S ribosomal RNA (rRNA) gene amplification and sequencing. A significant fraction of the collection consisted of Actinobacteria and Proteobacteria, as well as Firmicutes strains. Among the 254 isolates, 37 different genera were represented, and a high number of possible new taxa were identified (31%), of which, three new Kineococcus species. Moreover, 5 out of the 13 genera represented by one isolate were also possible new species. Specifically, the sequences of 80 isolates held a percentage of identity below the 98.7% threshold considered for potentially new species. These strains belonged to 20 genera. Our results reveal a clear link between medium dilution and isolation of new species, highlight the unexploited bacterial biodiversity of the Tabernas Desert, and evidence the potential of simple strategies to yield surprisingly large numbers of diverse, previously unreported, bacterial strains and species.

16.
Microb Biotechnol ; 13(2): 305-310, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31872971

RESUMO

The largest survey on the perception of synthetic biology-related disciplines (Porcar et al., 2019,EMBO Rep 20) recently revealed that the Spanish society does not have a very positive perception of the term synthetic biology. On the other hand, the terms biotechnology and even genetic engineering received relatively higher scores. The issue of nomenclature and perception is a classical one in science perception studies. Synthetic biologists have been debating their neologism (Synthetic Biology, from now on SB) for years. Even in a 2006 blog, Rob Carlson discussed the various labels for the new field, such as intentional biology, constructive biology, natural engineering, synthetic genomics and biological engineering. This diversity of names, along with the above mentioned negative public perception of the term synthetic biology, raises the question on whether the term itself is suitable or whether it could, in an extreme scenario, be replaced by another combining scientific consensus with public acceptance.


Assuntos
Biologia Sintética , Terminologia como Assunto , Biotecnologia , Engenharia Genética , Genômica
17.
Microb Biotechnol ; 12(6): 1359-1370, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31562755

RESUMO

Microbial communities from harsh environments hold great promise as sources of biotechnologically relevant strains and compounds. In the present work, we have characterized the microorganisms from the supralittoral and splash zone in three different rocky locations of the Western Mediterranean coast, a tough environment characterized by high levels of irradiation and large temperature and salinity fluctuations. We have retrieved a complete view of the ecology and functional aspects of these communities and assessed the biotechnological potential of the cultivable microorganisms. All three locations displayed very similar taxonomic profiles, with the genus Rubrobacter and the families Xenococcaceae, Flammeovirgaceae, Phyllobacteriaceae, Rhodobacteraceae and Trueperaceae being the most abundant taxa; and Ascomycota and halotolerant archaea as members of the eukaryotic and archaeal community respectively. In parallel, the culture-dependent approach yielded a 100-isolates collection, out of which 12 displayed high antioxidant activities, as evidenced by two in vitro (hydrogen peroxide and DPPH) and confirmed in vivo with Caenorhabditis elegans assays, in which two isolates, CR22 and CR24, resulted in extended survival rates of the nematodes. This work is the first complete characterization of the Mediterranean splash-zone coastal microbiome, and our results indicate that this microbial niche is home of an extremophilic community that holds biotechnological potential.


Assuntos
Archaea/isolamento & purificação , Ascomicetos/isolamento & purificação , Bactérias/isolamento & purificação , Produtos Biológicos/metabolismo , Microbiologia Ambiental , Microbiota , Animais , Antioxidantes/metabolismo , Archaea/classificação , Archaea/metabolismo , Ascomicetos/classificação , Ascomicetos/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/microbiologia , Região do Mediterrâneo , Técnicas Microbiológicas , Análise de Sobrevida
18.
Biol Direct ; 14(1): 17, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481097

RESUMO

BACKGROUND: Determining the factors involved in the likelihood of a gene being under adaptive selection is still a challenging goal in Evolutionary Biology. Here, we perform an evolutionary analysis of the human metabolic genes to explore the associations between network structure and the presence and strength of natural selection in the genes whose products are involved in metabolism. Purifying and positive selection are estimated at interspecific (among mammals) and intraspecific (among human populations) levels, and the connections between enzymatic reactions are differentiated between incoming (in-degree) and outgoing (out-degree) links. RESULTS: We confirm that purifying selection has been stronger in highly connected genes. Long-term positive selection has targeted poorly connected enzymes, whereas short-term positive selection has targeted different enzymes depending on whether the selective sweep has reached fixation in the population: genes under a complete selective sweep are poorly connected, whereas those under an incomplete selective sweep have high out-degree connectivity. The last steps of pathways are more conserved due to stronger purifying selection, with long-term positive selection targeting preferentially enzymes that catalyze the first steps. However, short-term positive selection has targeted enzymes that catalyze the last steps in the metabolic network. Strong signals of positive selection have been found for metabolic processes involved in lipid transport and membrane fluidity and permeability. CONCLUSIONS: Our analysis highlights the importance of analyzing the same biological system at different evolutionary timescales to understand the evolution of metabolic genes and of distinguishing between incoming and outgoing links in a metabolic network. Short-term positive selection has targeted enzymes with a different connectivity profile depending on the completeness of the selective sweep, while long-term positive selection has targeted genes with fewer connections that code for enzymes that catalyze the first steps in the network. REVIEWERS: This article was reviewed by Diamantis Sellis and Brandon Invergo.


Assuntos
Evolução Molecular , Mamíferos/genética , Redes e Vias Metabólicas/genética , Seleção Genética , Animais , Humanos , Mamíferos/metabolismo
19.
Orig Life Evol Biosph ; 49(3): 111-145, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31399826

RESUMO

In this review, we describe some of the central philosophical issues facing origins-of-life research and provide a targeted history of the developments that have led to the multidisciplinary field of origins-of-life studies. We outline these issues and developments to guide researchers and students from all fields. With respect to philosophy, we provide brief summaries of debates with respect to (1) definitions (or theories) of life, what life is and how research should be conducted in the absence of an accepted theory of life, (2) the distinctions between synthetic, historical, and universal projects in origins-of-life studies, issues with strategies for inferring the origins of life, such as (3) the nature of the first living entities (the "bottom up" approach) and (4) how to infer the nature of the last universal common ancestor (the "top down" approach), and (5) the status of origins of life as a science. Each of these debates influences the others. Although there are clusters of researchers that agree on some answers to these issues, each of these debates is still open. With respect to history, we outline several independent paths that have led to some of the approaches now prevalent in origins-of-life studies. These include one path from early views of life through the scientific revolutions brought about by Linnaeus (von Linn.), Wöhler, Miller, and others. In this approach, new theories, tools, and evidence guide new thoughts about the nature of life and its origin. We also describe another family of paths motivated by a" circularity" approach to life, which is guided by such thinkers as Maturana & Varela, Gánti, Rosen, and others. These views echo ideas developed by Kant and Aristotle, though they do so using modern science in ways that produce exciting avenues of investigation. By exploring the history of these ideas, we can see how many of the issues that currently interest us have been guided by the contexts in which the ideas were developed. The disciplinary backgrounds of each of these scholars has influenced the questions they sought to answer, the experiments they envisioned, and the kinds of data they collected. We conclude by encouraging scientists and scholars in the humanities and social sciences to explore ways in which they can interact to provide a deeper understanding of the conceptual assumptions, structure, and history of origins-of-life research. This may be useful to help frame future research agendas and bring awareness to the multifaceted issues facing this challenging scientific question.


Assuntos
Biologia/história , Química/história , Historiografia , Informática/história , Origem da Vida , Paleontologia/história , Filosofia/história , História do Século XVI , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , Biologia Molecular/história
20.
Front Microbiol ; 10: 986, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31134025

RESUMO

Microbial communities that are exposed to sunlight typically share a series of adaptations to deal with the radiation they are exposed to, including efficient DNA repair systems, pigment production and protection against oxidative stress, which makes these environments good candidates for the search of novel antioxidant microorganisms. In this research project, we isolated potential antioxidant pigmented bacteria from a dry and highly-irradiated extreme environment: solar panels. High-throughput in vivo assays using Caenorhabditis elegans as an experimental model demonstrated the high antioxidant and ultraviolet-protection properties of these bacterial isolates that proved to be rich in carotenoids. Our results suggest that solar panels harbor a microbial community that includes strains with potential applications as antioxidants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA