Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell Syst ; 13(4): 304-320.e5, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35148841

RESUMO

Huntington disease (HD) is a monogenic neurodegenerative disorder with one causative gene, huntingtin (HTT). Yet, HD pathobiology is multifactorial, suggesting that cellular factors influence disease progression. Here, we define HTT protein-protein interactions (PPIs) perturbed by the mutant protein with expanded polyglutamine in the mouse striatum, a brain region with selective HD vulnerability. Using metabolically labeled tissues and immunoaffinity purification-mass spectrometry, we establish that polyglutamine-dependent modulation of HTT PPI abundances and relative stability starts at an early stage of pathogenesis in a Q140 HD mouse model. We identify direct and indirect PPIs that are also genetic disease modifiers using in-cell two-hybrid and behavioral assays in HD human cell and Drosophila models, respectively. Validated, disease-relevant mHTT-dependent interactions encompass mediators of synaptic neurotransmission (SNAREs and glutamate receptors) and lysosomal acidification (V-ATPase). Our study provides a resource for understanding mHTT-dependent dysfunction in cortico-striatal cellular networks, partly through impaired synaptic communication and endosomal-lysosomal system. A record of this paper's Transparent Peer Review process is included in the supplemental information.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Animais , Corpo Estriado , Modelos Animais de Doenças , Drosophila/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Camundongos , Doenças Neurodegenerativas/metabolismo
2.
Hum Mol Genet ; 30(8): 706-715, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33772540

RESUMO

Spinocerebellar Ataxia Type 1 (SCA1) is an autosomal dominant neurodegenerative disorder caused by a polyglutamine expansion in the ataxin-1 protein. Recent genetic correlational studies have implicated DNA damage repair pathways in modifying the age at onset of disease symptoms in SCA1 and Huntington's Disease, another polyglutamine expansion disease. We demonstrate that both endogenous and transfected ataxin-1 localizes to sites of DNA damage, which is impaired by polyglutamine expansion. This response is dependent on ataxia-telangiectasia mutated (ATM) kinase activity. Further, we characterize an ATM phosphorylation motif within ataxin-1 at serine 188. We show reduction of the Drosophila ATM homolog levels in a ATXN1[82Q] Drosophila model through shRNA or genetic cross ameliorates motor symptoms. These findings offer a possible explanation as to why DNA repair was implicated in SCA1 pathogenesis by past studies. The similarities between the ataxin-1 and the huntingtin responses to DNA damage provide further support for a shared pathogenic mechanism for polyglutamine expansion diseases.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Ataxina-1/genética , Dano ao DNA , Ataxias Espinocerebelares/genética , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Ataxina-1/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Drosophila/genética , Drosophila/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Humanos , Microscopia Confocal , Mutação , Peptídeos/genética , Homologia de Sequência de Aminoácidos , Transdução de Sinais/genética , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/patologia , Repetições de Trinucleotídeos/genética
3.
Hum Mol Genet ; 28(12): 2014-2029, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30753434

RESUMO

An early hallmark of Alzheimer's disease is the accumulation of amyloid-ß (Aß), inspiring numerous therapeutic strategies targeting this peptide. An alternative approach is to destabilize the amyloid beta precursor protein (APP) from which Aß is derived. We interrogated innate pathways governing APP stability using a siRNA screen for modifiers whose own reduction diminished APP in human cell lines and transgenic Drosophila. As proof of principle, we validated PKCß-a known modifier identified by the screen-in an APP transgenic mouse model. PKCß was genetically targeted using a novel adeno-associated virus shuttle vector to deliver microRNA-adapted shRNA via intracranial injection. In vivo reduction of PKCß initially diminished APP and delayed plaque formation. Despite persistent PKCß suppression, the effect on APP and amyloid diminished over time. Our study advances this approach for mining druggable modifiers of disease-associated proteins, while cautioning that prolonged in vivo validation may be needed to reveal emergent limitations on efficacy.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Amiloidose/metabolismo , Proteína Quinase C beta/antagonistas & inibidores , Doença de Alzheimer/genética , Amiloidose/terapia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Drosophila , Testes Genéticos , Terapia Genética , Humanos , Camundongos , Camundongos Transgênicos , Células NIH 3T3 , Fosforilação , Placa Amiloide/patologia , Proteína Quinase C beta/genética , Proteína Quinase C beta/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
4.
J Neurosci ; 38(43): 9286-9301, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30249792

RESUMO

Accumulation of α-Synuclein (α-Syn) causes Parkinson's disease (PD) as well as other synucleopathies. α-Syn is the major component of Lewy bodies and Lewy neurites, the proteinaceous aggregates that are a hallmark of sporadic PD. In familial forms of PD, mutations or copy number variations in SNCA (the α-Syn gene) result in a net increase of its protein levels. Furthermore, common risk variants tied to PD are associated with small increases of wild-type α-Syn levels. These findings are further bolstered by animal studies which show that overexpression of α-Syn is sufficient to cause PD-like features. Thus, increased α-Syn levels are intrinsically tied to PD pathogenesis and underscore the importance of identifying the factors that regulate its levels. In this study, we establish a pooled RNAi screening approach and validation pipeline to probe the druggable genome for modifiers of α-Syn levels and identify 60 promising targets. Using a cross-species, tiered validation approach, we validate six strong candidates that modulate α-Syn levels and toxicity in cell lines, Drosophila, human neurons, and mouse brain of both sexes. More broadly, this genetic strategy and validation pipeline can be applied for the identification of therapeutic targets for disorders driven by dosage-sensitive proteins.SIGNIFICANCE STATEMENT We present a research strategy for the systematic identification and validation of genes modulating the levels of α-Synuclein, a protein involved in Parkinson's disease. A cell-based screen of the druggable genome (>7,500 genes that are potential therapeutic targets) yielded many modulators of α-Synuclein that were subsequently confirmed and validated in Drosophila, human neurons, and mouse brain. This approach has broad applicability to the multitude of neurological diseases that are caused by mutations in genes whose dosage is critical for brain function.


Assuntos
Genoma/genética , Neurônios/fisiologia , Interferência de RNA/fisiologia , Análise de Sequência de RNA/métodos , alfa-Sinucleína/genética , Animais , Animais Recém-Nascidos , Drosophila , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Reprodutibilidade dos Testes , Especificidade da Espécie
5.
PLoS Genet ; 4(9): e1000179, 2008 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-18773074

RESUMO

The levels of methyl-CpG-binding protein 2 (MeCP2) are critical for normal post-natal development and function of the nervous system. Loss of function of MeCP2, a transcriptional regulator involved in chromatin remodeling, causes classic Rett syndrome (RTT) as well as other related conditions characterized by autism, learning disabilities, or mental retardation. Increased dosage of MeCP2 also leads to clinically similar neurological disorders and mental retardation. To identify molecular mechanisms capable of compensating for altered MeCP2 levels, we generated transgenic Drosophila overexpressing human MeCP2. We find that MeCP2 associates with chromatin and is phosphorylated at serine 423 in Drosophila, as is found in mammals. MeCP2 overexpression leads to anatomical (i.e., disorganized eyes, ectopic wing veins) and behavioral (i.e., motor dysfunction) abnormalities. We used a candidate gene approach to identify genes that are able to compensate for abnormal phenotypes caused by MeCP2 increased activity. These genetic modifiers include other chromatin remodeling genes (Additional sex combs, corto, osa, Sex combs on midleg, and trithorax), the kinase tricornered, the UBE3A target pebble, and Drosophila homologues of the MeCP2 physical interactors Sin3a, REST, and N-CoR. These findings demonstrate that anatomical and behavioral phenotypes caused by MeCP2 activity can be ameliorated by altering other factors that might be more amenable to manipulation than MeCP2 itself.


Assuntos
Drosophila/embriologia , Drosophila/genética , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Animais , Animais Geneticamente Modificados , Cromatina/metabolismo , Drosophila/metabolismo , Humanos , Microscopia Eletrônica de Varredura , Fenótipo , Fosforilação , Serina/genética , Serina/metabolismo
6.
Hum Mol Genet ; 17(3): 376-90, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17984172

RESUMO

Spinocerebellar Ataxia type 1 (SCA1) and Huntington's disease (HD) are two polyglutamine disorders caused by expansion of a CAG repeat within the coding regions of the Ataxin-1 and Huntingtin proteins, respectively. While protein folding and turnover have been implicated in polyglutamine disorders in general, many clinical and pathological differences suggest that there are also disease-specific mechanisms. Taking advantage of a collection of genetic modifiers of expanded Ataxin-1-induced neurotoxicity, we performed a comparative analysis in Drosophila models of the two diseases. We show that while some modifier genes function similarly in SCA1 and HD Drosophila models, others have model-specific effects. Surprisingly, certain modifier genes modify SCA1 and HD models in opposite directions, i.e. they behave as suppressors in one case and enhancers in the other. Furthermore, we find that modulation of toxicity does not correlate with alterations in the formation of neuronal intranuclear inclusions. Our results point to potential common therapeutic targets in novel pathways, and to genes and pathways responsible for differences between Ataxin-1 and Huntingtin-induced neurodegeneration.


Assuntos
Drosophila/genética , Transtornos Heredodegenerativos do Sistema Nervoso/etiologia , Peptídeos/genética , Animais , Animais Geneticamente Modificados , Ataxina-1 , Ataxinas , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Genes Dominantes , Genes de Insetos , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Humanos , Proteína Huntingtina , Doença de Huntington/etiologia , Doença de Huntington/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Fenótipo , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Recombinantes/genética , Ataxias Espinocerebelares/etiologia , Ataxias Espinocerebelares/genética
7.
PLoS Genet ; 3(12): e234, 2007 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-18166084

RESUMO

Spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of neurodegenerative disorders sharing atrophy of the cerebellum as a common feature. SCA1 and SCA2 are two ataxias caused by expansion of polyglutamine tracts in Ataxin-1 (ATXN1) and Ataxin-2 (ATXN2), respectively, two proteins that are otherwise unrelated. Here, we use a Drosophila model of SCA1 to unveil molecular mechanisms linking Ataxin-1 with Ataxin-2 during SCA1 pathogenesis. We show that wild-type Drosophila Ataxin-2 (dAtx2) is a major genetic modifier of human expanded Ataxin-1 (Ataxin-1[82Q]) toxicity. Increased dAtx2 levels enhance, and more importantly, decreased dAtx2 levels suppress Ataxin-1[82Q]-induced neurodegeneration, thereby ruling out a pathogenic mechanism by depletion of dAtx2. Although Ataxin-2 is normally cytoplasmic and Ataxin-1 nuclear, we show that both dAtx2 and hAtaxin-2 physically interact with Ataxin-1. Furthermore, we show that expanded Ataxin-1 induces intranuclear accumulation of dAtx2/hAtaxin-2 in both Drosophila and SCA1 postmortem neurons. These observations suggest that nuclear accumulation of Ataxin-2 contributes to expanded Ataxin-1-induced toxicity. We tested this hypothesis engineering dAtx2 transgenes with nuclear localization signal (NLS) and nuclear export signal (NES). We find that NLS-dAtx2, but not NES-dAtx2, mimics the neurodegenerative phenotypes caused by Ataxin-1[82Q], including repression of the proneural factor Senseless. Altogether, these findings reveal a previously unknown functional link between neurodegenerative disorders with common clinical features but different etiology.


Assuntos
Proteínas do Tecido Nervoso/fisiologia , Doenças Neurodegenerativas/fisiopatologia , Proteínas Nucleares/fisiologia , Animais , Ataxina-1 , Ataxinas , Drosophila , Modelos Biológicos , Proteínas do Tecido Nervoso/genética
8.
J Biol Chem ; 281(36): 26714-24, 2006 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-16831871

RESUMO

CHIP (C terminus of Hsc-70 interacting protein) is an E3 ligase that links the protein folding machinery with the ubiquitin-proteasome system and has been implicated in disorders characterized by protein misfolding and aggregation. Here we investigate the role of CHIP in protecting from ataxin-1-induced neurodegeneration. Ataxin-1 is a polyglutamine protein whose expansion causes spinocerebellar ataxia type-1 (SCA1) and triggers the formation of nuclear inclusions (NIs). We find that CHIP and ataxin-1 proteins directly interact and co-localize in NIs both in cell culture and SCA1 postmortem neurons. CHIP promotes ubiquitination of expanded ataxin-1 both in vitro and in cell culture. The Hsp70 chaperone increases CHIP-mediated ubiquitination of ataxin-1 in vitro, and the tetratricopeptide repeat domain, which mediates CHIP interactions with chaperones, is required for ataxin-1 ubitiquination in cell culture. Interestingly, CHIP also interacts with and ubiquitinates unexpanded ataxin-1. Overexpression of CHIP in a Drosophila model of SCA1 decreases the protein steady-state levels of both expanded and unexpanded ataxin-1 and suppresses their toxicity. Finally we investigate the ability of CHIP to protect against toxicity caused by expanded polyglutamine tracts in different protein contexts. We find that CHIP is not effective in suppressing the toxicity caused by a bare 127Q tract with only a short hemagglutinin tag, but it is very efficient in suppressing toxicity caused by a 128Q tract in the context of an N-terminal huntingtin backbone. These data underscore the importance of the protein framework for modulating the effects of polyglutamine-induced neurodegeneration.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/toxicidade , Proteínas Nucleares/metabolismo , Proteínas Nucleares/toxicidade , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Animais , Ataxina-1 , Ataxinas , Células Cultivadas , Drosophila melanogaster/anatomia & histologia , Humanos , Corpos de Inclusão Intranuclear/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Proteínas Nucleares/genética , Peptídeos/toxicidade , Células Fotorreceptoras de Invertebrados/citologia , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/patologia , Conformação Proteica , Dobramento de Proteína , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/patologia , Transgenes , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA