Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Immunobiology ; 229(4): 152827, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38878483

RESUMO

BACKGROUND: Encephalitozoon cuniculi is an opportunistic intracellular pathogen that establishes a balanced relationship with immunocompetent individuals depending on the activity of their CD8+ T cells lymphocytes. However, lower resistance to experimental infection with E. cuniculi was found in B-1 deficient mice (Xid), besides increased the number of CD8 T lymphocytes. Here, we evaluated the profile of CD8+ T lymphocytes from Balb/c wild-type (WT) or Balb/c Xid mice (with B-1 cell deficiency) on the microbicidal activity of macrophages challenged with E. cuniculi. METHODS: Naïve CD8 T lymphocytes from WT or Xid mice uninfected and primed CD8 T lymphocytes from WT or Xid mice infected with E cuniculi were co-cultured with macrophages previously challenged with E. cuniculi. We evaluated macrophages viability and microbicidal activity, and CD8 T lymphocytes viability and presence of activating molecules (CD62L, CD69, and CD107a). RESULTS: Macrophages co-cultured with naïve CD8 T lymphocytes from WT demonstrated high microbicidal activity. Naïve CD8 T lymphocytes obtained from WT mice had a higher expression of CD69 and LAMP-1-activating molecules compared to Xid CD8+ T lymphocytes. Primed CD8 T lymphocytes from Xid mice proliferated more than those from WT mice, however, when the expression of the activating molecule CD69 associated with the expression of CD62L was kept low. In conclusion, naïve CD8+ T lymphocytes from Xid mice, deficient in B-1 cells, they had reduced expression of activation molecules and cytotoxic activity.


Assuntos
Linfócitos T CD8-Positivos , Encephalitozoon cuniculi , Macrófagos , Animais , Linfócitos T CD8-Positivos/imunologia , Camundongos , Macrófagos/imunologia , Encephalitozoon cuniculi/imunologia , Camundongos Endogâmicos BALB C , Ativação Linfocitária/imunologia , Encefalitozoonose/imunologia , Linfócitos B/imunologia , Técnicas de Cocultura
2.
Comp Immunol Microbiol Infect Dis ; 81: 101742, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35074660

RESUMO

Encephalitozoon cuniculi, an intracellular pathogen, lives in a balanced relationship with immunocompetent individuals based on the activity of T lymphocytes. We previously highlighted the greater susceptibility of B-1 cell-deficient mice (XID mice) to encephalitozoonosis. This study aimed to develop a model of disseminated and severe encephalitozoonosis in mice with combined immunodeficiency to elucidate the role of B cells. To address this objective, cyclophosphamide (Cy)-treated BALB/c and XID mice were inoculated with E. cuniculi, followed by the evaluation of the immune response and histopathological lesions. Immunosuppressed BALB/c mice manifested no clinical signs with an increase in the populations of T lymphocytes and macrophages in the spleen. Immunosuppressed and infected XID mice revealed elevated T cells, macrophages populations, and pro-inflammatory cytokines levels (IFN-γ, TNF-α, and IL-6) with the presence of abdominal effusion and lesions in multiple organs. These clinical characteristics are associated with extensive and severe encephalitozoonosis. The symptoms and lesion size were reduced, whereas B-2 and CD4+ T cells populations were increased in the spleen by transferring B-2 cells adoptive to XID mice. Moreover, B-1 cells adoptive transfer upregulated the peritoneal populations of B-2 cells and macrophages but not T lymphocytes and decreased the symptoms. Herein, we speculated the consistency in the development of severe and disseminated encephalitozoonosis in mice with genetic deficiency of Bruton's tyrosine kinase (Btk) associated with Cy immunosuppression develop with that of the models with T cell deficiency. Taken together, these data emphasized the crucial role of B cells in the protective immune response against encephalitozoonosis.


Assuntos
Encephalitozoon cuniculi , Encefalitozoonose , Doenças dos Roedores , Transferência Adotiva/veterinária , Animais , Encefalitozoonose/veterinária , Camundongos , Camundongos Endogâmicos BALB C , Baço
3.
PLoS One ; 16(3): e0247658, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33667240

RESUMO

Microsporidia are recognized as opportunistic pathogens in individuals with immunodeficiencies, especially related to T cells. Although the activity of CD8+ T lymphocytes is essential to eliminate these pathogens, earlier studies have shown significant participation of macrophages at the beginning of the infection. Macrophages and other innate immunity cells play a critical role in activating the acquired immunity. After programmed cell death, the cell fragments or apoptotic bodies are cleared by phagocytic cells, a phenomenon known as efferocytosis. This process has been recognized as a way of evading immunity by intracellular pathogens. The present study evaluated the impact of efferocytosis of apoptotic cells either infected or not on macrophages and subsequently challenged with Encephalitozoon cuniculi microsporidia. Macrophages were obtained from the bone marrow monocytes from C57BL mice, pre-incubated with apoptotic Jurkat cells (ACs), and were further challenged with E. cuniculi spores. The same procedures were performed using the previously infected Jurkat cells (IACs) and challenged with E. cuniculi spores before macrophage pre-incubation. The average number of spores internalized by macrophages in phagocytosis was counted. Macrophage expression of CD40, CD206, CD80, CD86, and MHCII, as well as the cytokines released in the culture supernatants, was measured by flow cytometry. The ultrastructural study was performed to analyze the multiplication types of pathogens. Macrophages pre-incubated with ACs and challenged with E. cuniculi showed a higher percentage of phagocytosis and an average number of internalized spores. Moreover, the presence of stages of multiplication of the pathogen inside the macrophages, particularly after efferocytosis of infected apoptotic bodies, was observed. In addition, pre-incubation with ACs or IACs and/or challenge with the pathogen decreased the viability of macrophages, reflected as high percentages of apoptosis. The marked expression of CD206 and the release of large amounts of IL-10 and IL-6 indicated the polarization of macrophages to an M2 profile, compatible with efferocytosis and favorable for pathogen development. We concluded that the pathogen favored efferocytosis and polarized the macrophages to an M2 profile, allowing the survival and multiplication of E. cuniculi inside the macrophages and explaining the possibility of macrophages acting as Trojan horses in microsporidiosis.


Assuntos
Apoptose/genética , Encephalitozoon cuniculi/imunologia , Evasão da Resposta Imune , Macrófagos/microbiologia , Esporos Fúngicos/imunologia , Animais , Medula Óssea/imunologia , Medula Óssea/microbiologia , Diferenciação Celular , Técnicas de Cocultura , Encephalitozoon cuniculi/genética , Encephalitozoon cuniculi/crescimento & desenvolvimento , Feminino , Expressão Gênica , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Células Jurkat , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Macrófagos/imunologia , Receptor de Manose , Lectinas de Ligação a Manose/genética , Lectinas de Ligação a Manose/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose , Cultura Primária de Células , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento
4.
J Immunol Res ; 2021: 7809637, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34977257

RESUMO

Depending on Leishmania species and the presence/absence of virulence factors, Leishmania extracellular vesicles (EVs) can differently stimulate host immune cells. This work is aimed at characterizing and evaluating the protective role of EVs released by Leishmania amazonensis promastigotes under different maintenance conditions. Initially, using a control strain, we standardized 26°C as the best release temperature to obtain EVs with a potential protective role in the experimental leishmaniasis model. Then, long-term (LT-P) promastigotes of L. amazonensis were obtained after long-term in vitro culture (100 in vitro passages). In vivo-derived (IVD-P) promastigotes of L. amazonensis were selected after 3 consecutive experimental infections in BALB/c mice. Those strains developed similar lesion sizes except for IVD-P at 8 weeks post infection. No differences in EV production were detected in both strains. However, the presence of LPG between LT-P and IVD-P EVs was different. Groups of mice immunized with EVs emulsified in the adjuvant and challenged with IVD-P parasites showed decreased lesion size and parasitic load compared with the nonimmunized groups. The immunization regimen with two doses showed high IFN-γ and IgG2a titers in challenged mice with either IVD-P or LT-P EVs. IL-4 and IL-10 were detected in immunized mice, suggesting a mixed Th1/Th2 profile. EVs released by either IVD-P or LT-P induced a partial protective effect in an immunization model. Thus, our results uncover a potential protective role of EVs from L. amazonensis for cutaneous leishmaniasis. Moreover, long-term maintenance under in vitro conditions did not seem to affect EV release and their immunization properties in mice.


Assuntos
Vesículas Extracelulares/metabolismo , Leishmania/fisiologia , Leishmaniose/metabolismo , Leishmaniose/parasitologia , Animais , Imunidade , Camundongos , Camundongos Endogâmicos BALB C
5.
Immunol Invest ; 49(4): 386-396, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31726897

RESUMO

Autophagy is a natural regulatory mechanism of the cell that eliminates unnecessary and dysfunctional cellular components to maintain homeostasis. Several authors have demonstrated that this mechanism can be induced by pathological conditions as cancer. However, their role in tumor development is still a controversial issue in cancer research. Here, we discussed the most relevant findings concerning autophagy in tumor development. In this critical review performed with studies published between 2002 and 2018, we found that the main pathway involved in the autophagy process is the PI3K/AKT/mTOR intracellular signaling pathway. Regarding their role in cancer development, breast cancer is the main study target, followed by lung, prostate and colon cancer. In these issues, 46% of the works consulted suggesting that autophagy inhibits tumor progression by favor a better antitumor response, 4% suggest that favors growth and tumor progression and, 50% of the authors failed to establish whether autophagy inhibits or favors tumor development. Herein, we concluded that depending on the study model, autophagy may favor or inhibits growth and cancer progression.


Assuntos
Autofagia , Neoplasias/metabolismo , Homeostase , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
6.
Front Microbiol ; 10: 2205, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608035

RESUMO

Microsporidia, including Encephalitozoon intestinalis, are emerging pathogens which cause opportunistic infections in immunocompromised patients, such as those with AIDS, cancer, the elderly and people on immunosuppressive drugs. Intestinal mucosa (IM) is crucial for developing an efficient adaptive immune response against pathogenic micro-organisms, thereby preventing their colonization and subsequent infection. As immunosuppressive drugs affect the intestinal immune response is little known. In the present study, we investigated the immune response to E. intestinalis infection in the IM and gut-associated lymphoid tissue (GALT) in cyclophosphamide (Cy) immunosuppressed mice, to mimic an immunocompromised condition. Histopathology revealed lymphoplasmacytic enteritis at 7 and 14 days-post-infection (dpi) in all infected groups, however, inflammation diminished at 21 and 28 dpi. Cy treatment also led to a higher number of E. intestinalis spores and lesions, which reduced at 28 dpi. In addition, flow cytometry analysis demonstrated CD4+ and CD8+ T cells to be predominant immune cells, with up-regulation in both Th1 and Th2 cytokines at 7 and 14 dpi, as demonstrated by histopathology. In conclusion, Cy treatment reduced GALT (Peyer's plaques and mesenteric lymph nodes) and peritoneum populations but increased the T-cell population in the intestinal mucosa and the production of pro-and anti-inflammatory cytokines, which were able to eliminate this opportunistic fungus and reduced the E. intestinalis infection.

7.
PLoS Negl Trop Dis ; 13(9): e0007674, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31536488

RESUMO

Here, we have investigated the possible effect of B-1 cells on the activity of peritoneal macrophages in E. cuniculi infection. In the presence of B-1 cells, peritoneal macrophages had an M1 profile with showed increased phagocytic capacity and index, associated with the intense microbicidal activity and a higher percentage of apoptotic death. The absence of B-1 cells was associated with a predominance of the M2 macrophages, reduced phagocytic capacity and index and microbicidal activity, increased pro-inflammatory and anti-inflammatory cytokines production, and higher percentual of necrosis death. In addition, in the M2 macrophages, spore of phagocytic E. cuniculi with polar tubular extrusion was observed, which is an important mechanism of evasion of the immune response. The results showed the importance of B-1 cells in the modulation of macrophage function against E. cuniculi infection, increasing microbicidal activity, and reducing the fungal mechanisms involved in the evasion of the immune response.


Assuntos
Subpopulações de Linfócitos B , Encephalitozoon cuniculi/imunologia , Encefalitozoonose/imunologia , Encefalitozoonose/patologia , Macrófagos Peritoneais/imunologia , Animais , Apoptose , Células Cultivadas , Feminino , Macrófagos Peritoneais/microbiologia , Camundongos Endogâmicos BALB C , Fagocitose/imunologia , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/imunologia , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/genética
8.
Parasitol Res ; 118(5): 1343-1352, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30941496

RESUMO

The peritoneal cavity has a microenvironment capable of promoting proliferation, differentiation, and activation of the resident cells and recruitment of blood cells through the capillary network involved in the peritoneum. Among the cells found in the peritoneal cavity, B-1 cells are a particular cell type that contains features that are not very well defined. These cells differ from conventional B lymphocytes (B-2) by phenotypic, functional, and molecular characteristics. B-1 cells can produce natural antibodies, migrate to the inflammatory focus, and have the ability to phagocytose pathogens. However, the role of B-1 cells in immunity against parasites is still not completely understood. Several experimental models have demonstrated that B-1 cells can affect the susceptibility or resistance to parasite infections depending on the model and species. Here, we review the literature to provide information on the peculiarities of B-1 lymphocytes as well as their interaction with parasites.


Assuntos
Subpopulações de Linfócitos B/imunologia , Helmintíase/imunologia , Helmintos/imunologia , Imunidade Humoral/imunologia , Parasitos/imunologia , Cavidade Peritoneal/citologia , Infecções por Protozoários/imunologia , Animais , Citocinas/biossíntese , Citocinas/imunologia , Helmintíase/parasitologia , Humanos , Camundongos , Peritônio/citologia , Peritônio/imunologia , Infecções por Protozoários/parasitologia
9.
Microbes Infect ; 20(3): 196-204, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29203270

RESUMO

Microsporidia are intracellular pathogens that cause severe disease in immunocompromised humans and animals. We recently demonstrated that XID mice are more susceptible to Encephalitozoon cuniculi infection by intraperitoneal route, evidencing the role of B-1 cells in resistance against infection. The present study investigated the resistance and susceptibility against E. cuniculi oral infection, including the role of B-1 cells. BALB/c and BALB/c XID (B-1 cells deficient) mice were orally infected with E. cuniculi spores. No clinical symptoms were observed in infected animals; histopathology showed lymphoplasmocytic enteritis with degeneration of the apexes of the villi in all infected groups. Higher parasite burden was observed in infected BALB/c XID mice. In the spleen and peritoneum, all infected mice showed a decrease of lymphocytes, including CD8+ T cells, mostly in infected BALB/c XID mice. Adoptive transfer of B-1 cells (XID + B-1) was associated with a lower parasite burden. Pro-inflammatory cytokines (IFN-γ, TNF-α and IL-6) increased mostly in infected XID + B1 mice. Together, the present results showed that BALB/c XID mice infected by the oral route were more susceptible to encephalitozoonosis than BALB/c mice, demonstrating the B-1 cells importance in the control of the immune response against oral E. cuniculi infection.


Assuntos
Subpopulações de Linfócitos B/fisiologia , Linfócitos T CD8-Positivos/imunologia , Citocinas/sangue , Encephalitozoon cuniculi/fisiologia , Encefalitozoonose/imunologia , Regulação para Cima/imunologia , Transferência Adotiva , Animais , Subpopulações de Linfócitos B/imunologia , Citocinas/imunologia , Encefalitozoonose/microbiologia , Encefalitozoonose/patologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Baço/imunologia , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/imunologia , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/microbiologia
10.
PLoS One ; 12(11): e0187333, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29145406

RESUMO

B-1 lymphocytes are known to increase the metastatic potential of B16F10 melanoma cells via the extracellular signal-regulated kinase (ERK) pathway. Since IL-10 is associated with B-1 cells performance, we hypothesized that IL-10 could be implicated in the progression of melanoma. In the present work, we found that the C57BL/6 mice, inoculated with B16F10 cells that were co-cultivated with B-1 lymphocytes from IL-10 knockout mice, developed fewer metastatic nodules than the ones which were injected with the melanoma cells that were cultivated in the presence of wild-type B-1 cells. The impairment of metastatic potential of the B16F10 cells was correlated with low activation of the ERK signaling pathway, supporting the idea that the production of IL-10 by B-1 cells influences the behavior of the tumor. A microarray analysis of the B-1 lymphocytes revealed that IL-10 deficiency is associated with down-regulation of the genes that code for claudin-10, a protein that is involved in cell-to-cell contact and that has been linked to lung adenocarcinoma. In order to determine the impact of claudin-10 in the cross-talk between B-1 lymphocytes and the B16F10 tumor cells, we took advantage of small interfering RNA. The silencing of claudin-10 gene in B-1 lymphocytes inhibited activation of the ERK pathway and abrogated the B-1-induced aggressive behavior of the B16F10 cells. Thus, our findings suggest that the axis IL-10/claudin-10 is a promising target for the development of therapeutic agents against aggressive melanoma.


Assuntos
Claudinas/metabolismo , Interleucina-10/metabolismo , Melanoma Experimental/metabolismo , Animais , Linhagem Celular Tumoral , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica
11.
Immunobiology ; 222(2): 218-227, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27707513

RESUMO

Encephalitozoon cuniculi is an opportunist intracellular pathogen of mammals. The adaptive immune response is essential to eliminate E. cuniculi, but evidence is mounting that the response initiated by the innate immune response may ultimately define whether or not the parasite can survive. B-1 cells may act as antigen-presenting cells or differentiate into phagocytes, playing different roles in many infection models. However, the role of these cells in the dynamics of Encephalitozoon sp. infections is still unknown. To investigate the role of B-1 cells in E. cuniculi infection, BALB/c and BALB/c XID (B-1 cells deficient) mice were infected with E. cuniculi spores. Cytometric analyses of peritoneal cells showed that B-1 cells and macrophages increased significantly in infected BALB/c mice compared to uninfected controls. Despite the increase in the number of CD4+ and CD8+ lymphocytes in XID mice, these animals were more susceptible to infection as evidenced histologically with more prominent inflammatory lesions and parasite burden. Pro-inflammatory cytokines increased in both infected BALB/c and BALB/c XID mice. To confirm B-1 cells role in encephalitozoonosis, we adoptively transferred B-1 cells to BALB/c XID mice and this group showed few symptoms and microscopic lesions, associated with an increased in cytokines. Together, these results suggest that B-1 cells may increase the resistance of BALB/c mice to encephalitozoonosis, evidencing for the first time the important role of B-1 lymphocytes in the control of microsporidia infection.


Assuntos
Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Suscetibilidade a Doenças , Encefalitozoonose/imunologia , Encefalitozoonose/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Encephalitozoon cuniculi/imunologia , Encefalitozoonose/microbiologia , Encefalitozoonose/patologia , Feminino , Contagem de Linfócitos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
12.
Immunobiology ; 218(10): 1293-303, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23731774

RESUMO

The analysis of gene expression patterns in cancers has improved the understanding of the mechanisms underlying the process of metastatic progression. However, the acquisition of invasive behavior in melanoma is poorly understood. In melanoma, components of the immune system can contribute to tumor progression, and inflammatory cells can influence almost all aspects of cancer progression, including metastasis. Recent studies have attributed an important role to B-1 cells, a subset of B lymphocytes, in melanoma progression. In vitro interactions between B16 melanoma cells and B-1 lymphocytes lead to increased B16 cell metastatic potential, but the molecular changes induced by B-1 lymphocytes on B16 cells have not yet been elucidated. In this study, we used a microarray approach to assess the gene expression profile of B16 melanoma cells following contact with B-1 lymphocytes (B16B1). The microarray analysis identified upregulation in genes involved with metastatic progression, such as ctss, ccl5, cxcl2 and stat3. RT-qPCR confirmed this increase in mRNA expression in B16B1 samples. As previous studies have indicated that the ERK1/2 MAPK cascade is activated in melanoma cells following contact with B-1 lymphocytes, RT-qPCR was performed with RNA from melanoma cells before and after contacting B-1 cells and untreated or treated with ERK phosphorylation inhibitors. The results showed that the expression of stat3, ctss and cxcl2 increased in B16B1 but decreased following ERK1/2 MAPK inhibition. Ccl5 gene expression increased after contacting B-1 cells and was maintained at the same level following inhibitor treatment. Stat3 was verified and validated at the protein level by Western blot analysis. STAT3 expression was also significantly increased in B16B1, suggesting that this pathway can also contribute to the increased metastatic phenotype observed in our model. These results indicated that B-1 cells induce important global gene expression changes in B16 melanoma cells. We also evaluated the relationship of some of the genes identified as differentially expressed and the ERK1/2 MAPK cascade. This work may have important implications for understanding the role of B-1 lymphocytes and the ERK/MAPK cascade in the metastatic process.


Assuntos
Subpopulações de Linfócitos B/imunologia , Linfócitos B/imunologia , Melanoma Experimental/imunologia , Animais , Catepsinas/genética , Comunicação Celular , Quimiocina CCL5/genética , Quimiocina CXCL12/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise em Microsséries , Metástase Neoplásica/genética , Fator de Transcrição STAT3/genética , Células Tumorais Cultivadas
13.
PLoS One ; 8(5): e62805, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23667522

RESUMO

B-1 cells constitute a distinct B cell population with unique phenotypic and functional characteristics. They represent the main B cell population found in mouse peritoneal and pleural cavities. The communication between B-1 cells and peritoneal macrophages has been previously studied, and the effect this interaction has on macrophages has been previously described. Using an in vitro co-culture model, herein we demonstrated that peritoneal macrophages were able to increase survival rates and to stimulate proliferation of B-1 cells. IL-6 was also found to be important in B-1 cell survival; recombinant IL-6 increases the percentage of viable B-1 cells in culture. Furthermore, molecules involved in the IL-6 signaling pathway, such as STAT-3 and Bcl-2, were highly expressed in B-1 cells after co-culture with peritoneal macrophages. IL-6-deficient peritoneal macrophages were not able to increase B-1 cell survival, confirming the importance of this cytokine. Altogether, our results indicate a novel mechanism in which peritoneal macrophages are able to regulate the B-1 population via IL-6 secretion.


Assuntos
Linfócitos B/fisiologia , Interleucina-6/metabolismo , Macrófagos Peritoneais/fisiologia , Receptor Cross-Talk/fisiologia , Transdução de Sinais/fisiologia , Animais , Western Blotting , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fator de Transcrição STAT3/metabolismo
14.
Immunobiology ; 218(4): 609-19, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22954710

RESUMO

B-1 cells can be differentiated from B-2 cells because they are predominantly located in the peritoneal and pleural cavities and have distinct phenotypic patterns and activation properties. The role of both cell populations in cancer progression is still controversial. Previous studies have indicated that direct contact between B-1 cells and B16 melanoma tumor cells (B16) increases the metastatic potential of the tumor cells. However, cellular changes that are induced in B-1 cells during the interaction between these two cell types have not been evaluated. In the present study, it is hypothesized that B-1 cells are modified after their interaction with tumor cells, leading to both increased cell viability and rate of proliferation. Additionally, soluble factors that were secreted by B16 cells were sufficient to augment B-1 cell viability and to modify the production of IL-10 by B-1 cells. Impressively, after direct or indirect contact with the B16 cells, B-1 cells became resistant to radiation-induced cell death. Thus, future studies that assess the importance of concomitant immunity and other conventional therapies in cancer treatment are needed.


Assuntos
Subpopulações de Linfócitos B/imunologia , Comunicação Celular/imunologia , Proliferação de Células , Interleucina-10/imunologia , Melanoma/imunologia , Animais , Subpopulações de Linfócitos B/patologia , Comunicação Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Interleucina-10/genética , Melanoma/genética , Melanoma/patologia , Melanoma/radioterapia , Camundongos , Camundongos Knockout , Metástase Neoplásica , Peritônio/imunologia , Peritônio/patologia , Cavidade Pleural/imunologia , Cavidade Pleural/patologia
15.
Cancer Sci ; 99(5): 920-8, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18312464

RESUMO

Increasing evidence indicates that tumors require a constant influx of myelomonocytic cells to support their malignant behavior. This is caused by tumor-derived factors, which recruit and induce functional differentiation of myelomonocytic cells, most of which are macrophages. Although myeloid lineages are the classical precursors of macrophages, B-lymphoid lineages such as B-1 cells, a subset of B-lymphocytes found predominantly in pleural and peritoneal cavities, are also able to migrate to inflammatory sites and differentiate into mononuclear phagocytes exhibiting macrophage-like phenotypes. Here we examined the interplay of B-1 cells and tumor cells, and checked whether this interaction provides signals to influence melanoma cells metastases. Using in vitro coculture experiments we showed that B16, a murine melanoma cell line, and B-1 cells physically interact. Moreover, interaction of B16 with B-1 cells leads to up-regulation of metastasis-related gene expression (MMP-9 and CXCR-4), increasing its metastatic potential, as revealed by experimental metastases assays in vivo. We also provide evidence that B16 cells exhibit markedly up-regulated phosphorylation of the extracellular signal-regulated kinase (ERK) when cocultured with B-1 cells. Inhibition of ERK phosphorylation induced by B-1 cells with inhibitors of MEK1/2 strongly suppressed the induction of MMP-9 and CXCR-4 mRNA expression and impaired the increased metastatic behavior of B16. In addition, constitutive levels of ERK1/2 phosphorylation in B-1 cells are necessary for their commitment to affect the metastatic potential of B16 cells. Our findings show for the first time that B-1 lymphocytes can contribute to tumor cell properties required for invasiveness during metastatic spread.


Assuntos
Linfócitos B/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Melanoma/enzimologia , Animais , Feminino , Melanoma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Fosforilação , Células Tumorais Cultivadas , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA