Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Biomed Eng ; 71(1): 89-96, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37432837

RESUMO

The human subcutaneous fat layer, skin and muscle together act as a waveguide for microwave transmissions and provide a low-loss communication medium for implantable and wearable body area networks (BAN). In this work, fat-intrabody communication (Fat-IBC) as a human body-centric wireless communication link is explored. To reach a target 64 Mb/s inbody communication, wireless LAN in the 2.4 GHz band was tested using low-cost Raspberry Pi single-board computers. The link was characterized using scattering parameters, bit error rate (BER) for different modulation schemes, and IEEE 802.11n wireless communication using inbody (implanted) and onbody (on the skin) antenna combinations. The human body was emulated by phantoms of different lengths. All measurements were done in a shielded chamber to isolate the phantoms from external interference and to suppress unwanted transmission paths. The BER measurements show that, except when using dual on-body antennas with longer phantoms, the Fat-IBC link is very linear and can handle modulations as complex as 512-QAM without any significant degradation of the BER. For all antenna combinations and phantoms lengths, link speeds of 92 Mb/s were achieved using 40 MHz bandwidth provided by the IEEE 802.11n standard in the 2.4 GHz band. This speed is most likely limited by the used radio circuits, not the Fat-IBC link. The results show that Fat-IBC, using low-cost off-the-shelf hardware and established IEEE 802.11 wireless communication, can achieve high-speed data communication within the body. The obtained data rate is among the fastest measured with intrabody communication.


Assuntos
Próteses e Implantes , Pele , Humanos , Imagens de Fantasmas , Músculos , Tecnologia sem Fio
2.
Sensors (Basel) ; 21(16)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34450927

RESUMO

Microwave-based sensing for tissue analysis is recently gaining interest due to advantages such as non-ionizing radiation and non-invasiveness. We have developed a set of transmission sensors for microwave-based real-time sensing to quantify muscle mass and quality. In connection, we verified the sensors by 3D simulations, tested them in a laboratory on a homogeneous three-layer tissue model, and collected pilot clinical data in 20 patients and 25 healthy volunteers. This report focuses on initial sensor designs for the Muscle Analyzer System (MAS), their simulation, laboratory trials and clinical trials followed by developing three new sensors and their performance comparison. In the clinical studies, correlation studies were done to compare MAS performance with other clinical standards, specifically the skeletal muscle index, for muscle mass quantification. The results showed limited signal penetration depth for the Split Ring Resonator (SRR) sensor. New sensors were designed incorporating Substrate Integrated Waveguides (SIW) and a bandstop filter to overcome this problem. The sensors were validated through 3D simulations in which they showed increased penetration depth through tissue when compared to the SRR. The second-generation sensors offer higher penetration depth which will improve clinical data collection and validation. The bandstop filter is fabricated and studied in a group of volunteers, showing more reliable data that warrants further continuation of this development.


Assuntos
Micro-Ondas , Músculos , Simulação por Computador , Humanos
3.
Sensors (Basel) ; 18(2)2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29466312

RESUMO

In recent research, microwave sensors have been used to follow up the recovery of lower extremity trauma patients. This is done mainly by monitoring the changes of dielectric properties of lower limb tissues such as skin, fat, muscle, and bone. As part of the characterization of the microwave sensor, it is crucial to assess the signal penetration in in vivo tissues. This work presents a new approach for investigating the penetration depth of planar microwave sensors based on the Split-Ring Resonator in the in vivo context of the femoral area. This approach is based on the optimization of a 3D simulation model using the platform of CST Microwave Studio and consisting of a sensor of the considered type and a multilayered material representing the femoral area. The geometry of the layered material is built based on information from ultrasound images and includes mainly the thicknesses of skin, fat, and muscle tissues. The optimization target is the measured S11 parameters at the sensor connector and the fitting parameters are the permittivity of each layer of the material. Four positions in the femoral area (two at distal and two at thigh) in four volunteers are considered for the in vivo study. The penetration depths are finally calculated with the help of the electric field distribution in simulations of the optimized model for each one of the 16 considered positions. The numerical results show that positions at the thigh contribute the highest penetration values of up to 17.5 mm. This finding has a high significance in planning in vitro penetration depth measurements and other tests that are going to be performed in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA