Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Evol ; 13(9): e10438, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37720060

RESUMO

Global climate changes may cause profound effects on species adaptation, particularly in ectotherms for whom even moderate warmer temperatures can lead to disproportionate heat failure. Still, several organisms evolved to endure high desert temperatures. Here, we describe the thermal tolerance survival and the transcriptomic heat stress response of three genera of desert (Cataglyphis, Melophorus, and Ocymyrmex) and two of temperate ants (Formica and Myrmica) and explore convergent and specific adaptations. We found heat stress led to either a reactive or a constitutive response in desert ants: Cataglyphis holgerseni and Melophorus bagoti differentially regulated very few transcripts in response to heat (0.12% and 0.14%, respectively), while Cataglyphis bombycina and Ocymyrmex robustior responded with greater expression alterations (respectively affecting 0.6% and 1.53% of their transcriptomes). These two responsive mechanisms-reactive and constitutive-were related to individual thermal tolerance survival and convergently evolved in distinct desert ant genera. Moreover, in comparison with desert species, the two temperate ants differentially expressed thousands of transcripts more in response to heat stress (affecting 8% and 12.71% of F. fusca and Myr. sabuleti transcriptomes). In summary, we show that heat adaptation in thermophilic ants involved changes in the expression response. Overall, desert ants show reduced transcriptional alterations even when under high thermal stress, and their expression response may be either constitutive or reactive to temperature increase.

2.
J Exp Biol ; 226(3)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36695637

RESUMO

Over recent decades, increasing attention has been paid to how low-molecular-weight molecules affect thermal tolerance in animals. Although the disaccharide sugar trehalose is known to serve as a thermal protectant in unicellular organisms, nothing is known about its potential role in insects. In this study, we investigated the effect of trehalose on heat tolerance in the Namib desert ant, Ocymyrmex robustior, one of the most thermotolerant animals found in terrestrial ecosystems. First, we tested whether a trehalose-supplemented diet increased worker survival following exposure to heat stress. Second, we assessed the degree of protein damage by comparing protein aggregation levels for trehalose-supplemented workers and control workers. Third, we compared the expression levels of three genes involved in trehalose metabolism. We found that trehalose supplementation significantly enhanced worker heat tolerance, increased metabolic levels of trehalose and reduced protein aggregation under conditions of heat stress. Expression levels of the three genes varied in a manner that was consistent with the maintenance of trehalose in the hemolymph and tissues under conditions of heat stress. Altogether, these results suggest that increased trehalose concentration may help protect Namib desert ant individuals against heat stress. More generally, they highlight the role played by sugar metabolites in boosting tolerance in extremophiles.


Assuntos
Formigas , Animais , Formigas/genética , Formigas/metabolismo , Trealose/metabolismo , Agregados Proteicos , Ecossistema , Insetos/metabolismo , Temperatura Alta
3.
J Therm Biol ; 111: 103397, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36585078

RESUMO

Some ant species live in hot and arid environments, such as deserts and savannas. Worker polymorphism-variation in worker size and/or morphology within colonies-is adaptive in such ecosystems because it enhances resistance to heat stress and increases the efficiency of resource exploitation. However, species with small, monomorphic workers are also frequently found in these environments. How species with distinct worker size and degrees of polymorphism deal with such stressful environments remains poorly studied. We investigated the behavioral, physiological, and molecular adaptations that may enhance heat and desiccation tolerance in two sympatric species of Cataglyphis desert ants that differ dramatically in worker size and polymorphism: C. viatica is polymorphic, while C. cubica is small and monomorphic. We found that worker size, water content, water loss, and protein regulation play a key role in thermal resistance. (i) Large C. viatica workers better tolerated heat and desiccation stress than did small C. viatica or C. cubica workers. The former had greater water content and lost proportionally less water to evaporation under thermal stress. (ii) Despite their similar size distribution, workers of C. cubica are more heat tolerant than small C. viatica. This higher degree of tolerance likely stemmed from C. cubica workers having greater relative water content. (iii) Under thermal stress, small C. viatica workers metabolized larger quantities of fat and differentially expressed proteins involved in cellular homeostasis. In contrast, C. cubica downregulated the expression of numerous proteins involved in mitochondrial respiration likely reducing ROS accumulation. (iv) Consistent with these results, large C. viatica workers remained active throughout the day; C. cubica workers displayed a bimodal activity pattern, and small C. viatica remained poorly active outside the nest. Our study shows that ecologically similar ant species with different degrees of worker size polymorphism evolved distinct strategies for coping with extreme heat conditions.


Assuntos
Formigas , Animais , Formigas/fisiologia , Ecossistema , Adaptação Fisiológica , Resposta ao Choque Térmico/fisiologia , Água/metabolismo
4.
Mol Ecol ; 30(21): 5503-5516, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34415643

RESUMO

Over the last decade, increasing attention has been paid to the molecular adaptations used by organisms to cope with thermal stress. However, to date, few studies have focused on thermophilic species living in hot, arid climates. In this study, we explored molecular adaptations to heat stress in the thermophilic ant genus Cataglyphis, one of the world's most thermotolerant animal taxa. We compared heat tolerance and gene expression patterns across six Cataglyphis species from distinct phylogenetic groups that live in different habitats and experience different thermal regimes. We found that all six species had high heat tolerance levels with critical thermal maxima (CTmax ) ranging from 43℃ to 45℃ and a median lethal temperature (LT50) ranging from 44.5℃ to 46.8℃. Transcriptome analyses revealed that, although the number of differentially expressed genes varied widely for the six species (from 54 to 1118), many were also shared. Functional annotation of the differentially expressed and co-expressed genes showed that the biological pathways involved in heat-shock responses were similar among species and were associated with four major processes: the regulation of transcriptional machinery and DNA metabolism; the preservation of proteome stability; the elimination of toxic residues; and the maintenance of cellular integrity. Overall, our results suggest that molecular responses to heat stress have been evolutionarily conserved in the ant genus Cataglyphis and that their diversity may help workers withstand temperatures close to their physiological limits.


Assuntos
Formigas , Aclimatação , Adaptação Fisiológica/genética , Animais , Formigas/genética , Resposta ao Choque Térmico/genética , Temperatura Alta , Humanos , Filogenia
5.
Biol Rev Camb Philos Soc ; 95(6): 1535-1553, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33021060

RESUMO

Thermal stress is a major driver of population declines and extinctions. Shifts in thermal regimes create new environmental conditions, leading to trait adaptation, population migration, and/or species extinction. Extensive research has examined thermal adaptations in terrestrial arthropods. However, little is known about social insects, despite their major role in ecosystems. It is only within the last few years that the adaptations of social insects to thermal stress have received attention. Herein, we discuss what is currently known about thermal tolerance and thermal adaptation in social insects - namely ants, termites, social bees, and social wasps. We describe the behavioural, morphological, physiological, and molecular adaptations that social insects have evolved to cope with thermal stress. We examine individual and collective responses to both temporary and persistent changes in thermal conditions and explore the extent to which individuals can exploit genetic variability to acclimatise. Finally, we consider the costs and benefits of sociality in the face of thermal stress, and we propose some future research directions that should advance our knowledge of individual and collective thermal adaptations in social insects.


Assuntos
Formigas , Ecossistema , Aclimatação , Animais , Abelhas , Insetos , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA