RESUMO
Tissue-level and organism-level biological processes often involve the coordinated action of multiple distinct cell types. The recent application of single-cell assays to many individuals should enable the study of how donor-level variation in one cell type is linked to that in other cell types. Here we introduce a computational approach called single-cell interpretable tensor decomposition (scITD) to identify common axes of interindividual variation by considering joint expression variation across multiple cell types. scITD combines expression matrices from each cell type into a higher-order matrix and factorizes the result using the Tucker tensor decomposition. Applying scITD to single-cell RNA-sequencing data on 115 persons with lupus and 83 persons with coronavirus disease 2019, we identify patterns of coordinated cellular activity linked to disease severity and specific phenotypes, such as lupus nephritis. scITD results also implicate specific signaling pathways likely mediating coordination between cell types. Overall, scITD offers a tool for understanding the covariation of cell states across individuals, which can yield insights into the complex processes that define and stratify disease.
RESUMO
The visual world is richly adorned with texture, which can serve to delineate important elements of natural scenes. In anesthetized macaque monkeys, selectivity for the statistical features of natural texture is weak in V1, but substantial in V2, suggesting that neuronal activity in V2 might directly support texture perception. To test this, we investigated the relation between single cell activity in macaque V1 and V2 and simultaneously measured behavioral judgments of texture. We generated stimuli along a continuum between naturalistic texture and phase-randomized noise and trained two macaque monkeys to judge whether a sample texture more closely resembled one or the other extreme. Analysis of responses revealed that individual V1 and V2 neurons carried much less information about texture naturalness than behavioral reports. However, the sensitivity of V2 neurons, especially those preferring naturalistic textures, was significantly closer to that of behavior compared with V1. The firing of both V1 and V2 neurons predicted perceptual choices in response to repeated presentations of the same ambiguous stimulus in one monkey, despite low individual neural sensitivity. However, neither population predicted choice in the second monkey. We conclude that neural responses supporting texture perception likely continue to develop downstream of V2. Further, combined with neural data recorded while the same two monkeys performed an orientation discrimination task, our results demonstrate that choice-correlated neural activity in early sensory cortex is unstable across observers and tasks, untethered from neuronal sensitivity, and therefore unlikely to directly reflect the formation of perceptual decisions.
Assuntos
Macaca mulatta , Neurônios , Estimulação Luminosa , Córtex Visual , Animais , Estimulação Luminosa/métodos , Neurônios/fisiologia , Masculino , Córtex Visual/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Comportamento Animal/fisiologia , FemininoRESUMO
We report a case of a 62-year-old woman with a decade-long history of atypical chest pain resulting in a largely negative cardiac workup, who developed significant angiographically demonstrated coronary vasospasm thought to be due to a small dose of intravenous ketamine. In patients with a history of atypical chest pain despite a reassuring cardiac evaluation, providers should carefully consider medications that may precipitate coronary vasospasm and be prepared to treat it accordingly.
Assuntos
Vasoespasmo Coronário , Ketamina , Humanos , Vasoespasmo Coronário/induzido quimicamente , Ketamina/efeitos adversos , Ketamina/administração & dosagem , Feminino , Pessoa de Meia-Idade , Dor no Peito/induzido quimicamente , Angiografia CoronáriaRESUMO
The visual world is richly adorned with texture, which can serve to delineate important elements of natural scenes. In anesthetized macaque monkeys, selectivity for the statistical features of natural texture is weak in V1, but substantial in V2, suggesting that neuronal activity in V2 might directly support texture perception. To test this, we investigated the relation between single cell activity in macaque V1 and V2 and simultaneously measured behavioral judgments of texture. We generated stimuli along a continuum between naturalistic texture and phase-randomized noise and trained two macaque monkeys to judge whether a sample texture more closely resembled one or the other extreme. Analysis of responses revealed that individual V1 and V2 neurons carried much less information about texture naturalness than behavioral reports. However, the sensitivity of V2 neurons, especially those preferring naturalistic textures, was significantly closer to that of behavior compared with V1. The firing of both V1 and V2 neurons predicted perceptual choices in response to repeated presentations of the same ambiguous stimulus in one monkey, despite low individual neural sensitivity. However, neither population predicted choice in the second monkey. We conclude that neural responses supporting texture perception likely continue to develop downstream of V2. Further, combined with neural data recorded while the same two monkeys performed an orientation discrimination task, our results demonstrate that choice-correlated neural activity in early sensory cortex is unstable across observers and tasks, untethered from neuronal sensitivity, and thus unlikely to reflect a critical aspect of the formation of perceptual decisions. Significance statement: As visual signals propagate along the cortical hierarchy, they encode increasingly complex aspects of the sensory environment and likely have a more direct relationship with perceptual experience. We replicate and extend previous results from anesthetized monkeys differentiating the selectivity of neurons along the first step in cortical vision from area V1 to V2. However, our results further complicate efforts to establish neural signatures that reveal the relationship between perception and the neuronal activity of sensory populations. We find that choice-correlated activity in V1 and V2 is unstable across different observers and tasks, and also untethered from neuronal sensitivity and other features of nonsensory response modulation.
RESUMO
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease. Knowledge of circulating immune cell types and states associated with SLE remains incomplete. We profiled more than 1.2 million peripheral blood mononuclear cells (162 cases, 99 controls) with multiplexed single-cell RNA sequencing (mux-seq). Cases exhibited elevated expression of type 1 interferon-stimulated genes (ISGs) in monocytes, reduction of naïve CD4+ T cells that correlated with monocyte ISG expression, and expansion of repertoire-restricted cytotoxic GZMH+ CD8+ T cells. Cell type-specific expression features predicted case-control status and stratified patients into two molecular subtypes. We integrated dense genotyping data to map cell type-specific cis-expression quantitative trait loci and to link SLE-associated variants to cell type-specific expression. These results demonstrate mux-seq as a systematic approach to characterize cellular composition, identify transcriptional signatures, and annotate genetic variants associated with SLE.
Assuntos
Interferon Tipo I , Lúpus Eritematoso Sistêmico , Linfócitos T CD8-Positivos/metabolismo , Estudos de Casos e Controles , Humanos , Interferon Tipo I/metabolismo , Leucócitos Mononucleares , Lúpus Eritematoso Sistêmico/genética , RNA-Seq , Transcrição GênicaRESUMO
Off-target effects are well established confounders of CRISPR negative selection screens that impair the identification of essential genomic loci. In particular, non-coding regulatory elements and repetitive regions are often difficult to target with specific gRNAs, effectively precluding the unbiased screening of a large portion of the genome. To address this, we developed CRISPR Specificity Correction (CSC), a computational method that corrects for the effect of off-targeting on gRNA depletion. We benchmark CSC with data from the Cancer Dependency Map and show that it significantly improves the overall sensitivity and specificity of viability screens while preserving known essentialities, particularly for genes targeted by highly promiscuous gRNAs. We believe this tool will further enable the functional annotation of the genome as it represents a robust alternative to the traditional filtering strategy of discarding unspecific guides from the analysis. CSC is an open-source software that can be seamlessly integrated into current CRISPR analysis pipelines.
Assuntos
RNA Guia de Cinetoplastídeos/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiologia , Biologia Computacional/métodos , Edição de Genes , Humanos , RNA Guia de Cinetoplastídeos/genética , SoftwareRESUMO
Most single units recorded from macaque secondary visual cortex (V2) respond with higher firing rates to synthetic texture images containing "naturalistic" higher-order statistics than to spectrally matched "noise" images lacking these statistics. In contrast, few single units in V1 show this property. We explored how the strength and dynamics of response vary across the different layers of visual cortex by recording multiunit (defined as high-frequency power in the local field potential) and gamma-band activity evoked by brief presentations of naturalistic and noise images in V1 and V2 of anesthetized macaque monkeys of both sexes. As previously reported, recordings in V2 showed consistently stronger responses to naturalistic texture than to spectrally matched noise. In contrast to single-unit recordings, V1 multiunit activity showed a preference for images with naturalistic statistics, and in gamma-band activity this preference was comparable across V1 and V2. Sensitivity to naturalistic image structure was strongest in the supragranular and infragranular layers of V1, but weak in granular layers, suggesting that it might reflect feedback from V2. Response timing was consistent with this idea. Visual responses appeared first in V1, followed by V2. Sensitivity to naturalistic texture emerged first in V2, followed by the supragranular and infragranular layers of V1, and finally in the granular layers of V1. Our results demonstrate laminar differences in the encoding of higher-order statistics of natural texture, and suggest that this sensitivity first arises in V2 and is fed back to modulate activity in V1.SIGNIFICANCE STATEMENT The circuit mechanisms responsible for visual representations of intermediate complexity are largely unknown. We used a well validated set of synthetic texture stimuli to probe the temporal and laminar profile of sensitivity to the higher-order statistical structure of natural images. We found that this sensitivity emerges first and most strongly in V2 but soon after in V1. However, sensitivity in V1 is higher in the laminae (extragranular) and recording modalities (local field potential) most likely affected by V2 connections, suggesting a feedback origin. Our results show how sensitivity to naturalistic image structure emerges across time and circuitry in the early visual cortex.