Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2771, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188723

RESUMO

Insults to the developing cerebellum can cause motor, language, and social deficits. Here, we investigate whether developmental insults to different cerebellar neurons constrain the ability to acquire cerebellar-dependent behaviors. We perturb cerebellar cortical or nuclei neuron function by eliminating glutamatergic neurotransmission during development, and then we measure motor and social behaviors in early postnatal and adult mice. Altering cortical and nuclei neurons impacts postnatal motor control and social vocalizations. Normalizing neurotransmission in cortical neurons but not nuclei neurons restores social behaviors while the motor deficits remain impaired in adults. In contrast, manipulating only a subset of nuclei neurons leaves social behaviors intact but leads to early motor deficits that are restored by adulthood. Our data uncover that glutamatergic neurotransmission from cerebellar cortical and nuclei neurons differentially control the acquisition of motor and social behaviors, and that the brain can compensate for some but not all perturbations to the developing cerebellum.


Assuntos
Cerebelo , Neurônios , Camundongos , Animais , Cerebelo/fisiologia , Neurônios/fisiologia , Interneurônios , Transmissão Sináptica , Comportamento Social
2.
Cells ; 11(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36497147

RESUMO

Tremor is the most common movement disorder. Several drugs reduce tremor severity, but no cures are available. Propranolol, a ß-adrenergic receptor blocker, is the leading treatment for tremor. However, the in vivo circuit mechanisms by which propranolol decreases tremor remain unclear. Here, we test whether propranolol modulates activity in the cerebellum, a key node in the tremor network. We investigated the effects of propranolol in healthy control mice and Car8wdl/wdl mice, which exhibit pathophysiological tremor and ataxia due to cerebellar dysfunction. Propranolol reduced physiological tremor in control mice and reduced pathophysiological tremor in Car8wdl/wdl mice to control levels. Open field and footprinting assays showed that propranolol did not correct ataxia in Car8wdl/wdl mice. In vivo recordings in awake mice revealed that propranolol modulates the spiking activity of control and Car8wdl/wdl Purkinje cells. Recordings in cerebellar nuclei neurons, the targets of Purkinje cells, also revealed altered activity in propranolol-treated control and Car8wdl/wdl mice. Next, we tested whether propranolol reduces tremor through ß1 and ß2 adrenergic receptors. Propranolol did not change tremor amplitude or cerebellar nuclei activity in ß1 and ß2 null mice or Car8wdl/wdl mice lacking ß1 and ß2 receptor function. These data show that propranolol can modulate cerebellar circuit activity through ß-adrenergic receptors and may contribute to tremor therapeutics.


Assuntos
Cerebelo , Propranolol , Camundongos , Animais , Propranolol/farmacologia , Cerebelo/metabolismo , Células de Purkinje , Ataxia , Neurônios/metabolismo , Antagonistas Adrenérgicos beta/farmacologia , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Biomarcadores Tumorais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA