Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep Methods ; 3(3): 100422, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-37056381

RESUMO

The therapeutic potential of ligands targeting disease-associated membrane proteins is predicted by ligand-receptor binding constants, which can be determined using NanoLuciferase (NanoLuc)-based bioluminescence resonance energy transfer (NanoBRET) methods. However, the broad applicability of these methods is hampered by the restricted availability of fluorescent probes. We describe the use of antibody fragments, like nanobodies, as universal building blocks for fluorescent probes for use in NanoBRET. Our nanobody-NanoBRET (NanoB2) workflow starts with the generation of NanoLuc-tagged receptors and fluorescent nanobodies, enabling homogeneous, real-time monitoring of nanobody-receptor binding. Moreover, NanoB2 facilitates the assessment of receptor binding of unlabeled ligands in competition binding experiments. The broad significance is illustrated by the successful application of NanoB2 to different drug targets (e.g., multiple G protein-coupled receptors [GPCRs] and a receptor tyrosine kinase [RTK]) at distinct therapeutically relevant binding sites (i.e., extracellular and intracellular).


Assuntos
Anticorpos de Domínio Único , Ligantes , Proteínas de Membrana , Corantes Fluorescentes , Receptores Acoplados a Proteínas G/metabolismo
2.
Basic Clin Pharmacol Toxicol ; 132(6): 459-471, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36930875

RESUMO

The 57-mer full-length GPR15L(25-81) peptide has been identified as the principal endogenous agonist of the G protein-coupled receptor GPR15. Its main activity resides in the C-terminal 11-mer GPR15L(71-81), which has full efficacy but ~40-fold lower potency than the full-length peptide. Here, we systematically investigated the structure-activity relationship of GPR15L(71-81) by truncations/extensions, alanine-scanning, and N- and C-terminal capping. The synthesized peptide analogues were tested at GPR15 stably expressed in HEK293A cells using a homogenous time-resolved Förster resonance energy transfer-based Gi cAMP functional assay. We show that the C-terminal α carboxyl group and the residues Leu78 , Pro75 , Val74 , and Trp72 are critical for receptor interaction and contribute significantly to the peptide potency. Furthermore, we tested the ability of GPR15L(71-81), C-terminally amidated GPR15L(71-81), and GPR15L(25-81) to activate the three GPR15 receptor mutants in a bioluminescence resonance energy transfer-based G protein activation assay. The results demonstrate that the Lys192 and Glu272 residues in GPR15 are important for the potency of the GPR15L peptide. Overall, our study identifies critical residues in the peptide and receptor sequences for future drug design.


Assuntos
Peptídeos , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Peptídeos/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA