Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(23): 30556-30566, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38806166

RESUMO

Mannose-binding lectin (MBL) activates the complement system lectin pathway and subsequent inflammatory mechanisms. The incidence and outcome of many human diseases, such as brain ischemia and infections, are associated with and influenced by the activity and serum concentrations of MBL in body fluids. To quantify MBL levels, tests based on ELISA are used, requiring several incubation and washing steps and lengthy turnaround times. Here, we aimed to develop a nanoplasmonic assay for direct MBL detection in human serum at the point of care. Our assay is based on gold nanorods (GNRs) functionalized with mannose (Man-GNRs) via an amphiphilic linker. We experimentally determined the effective amount of sugar linked to the nanorods' surface, resulting in an approximate grafting density of 4 molecules per nm2, and an average number of 11 to 13 MBL molecules binding to a single nanoparticle. The optimal Man-GNRs concentration to achieve the highest sensitivity in MBL detection was 15 µg·mL-1. The specificity of the assay for MBL detection both in simple buffer and in complex pooled human sera was confirmed. Our label-free biosensor is able to detect MBL concentrations as low as 160 ng·mL-1 within 15 min directly in human serum via a one-step reaction and by using a microplate reader. Hence, it forms the basis for a fast, noninvasive, point-of-care assay for diagnostic indications and monitoring of disease and therapy.


Assuntos
Técnicas Biossensoriais , Ouro , Lectina de Ligação a Manose , Sistemas Automatizados de Assistência Junto ao Leito , Humanos , Ouro/química , Lectina de Ligação a Manose/sangue , Lectina de Ligação a Manose/química , Técnicas Biossensoriais/métodos , Nanotubos/química , Manose/química , Manose/sangue , Nanopartículas Metálicas/química
2.
J Colloid Interface Sci ; 645: 448-457, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37156153

RESUMO

HYPOTHESIS: Modification of polyallylamine hydrochloride (PAH) with heterobifunctional low molecular weight polyethylene glycol (PEG) (600 and 1395 Da), and subsequent attachment of mannose, glucose, or lactose sugars to PEG, can lead to formation of polyamine phosphate nanoparticles (PANs) with lectin binding affinity and narrow size distribution. EXPERIMENTS: Size, polydispersity, and internal structure of glycosylated PEGylated PANs were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS) and small angle X-ray scattering (SAXS). Fluorescence correlation spectroscopy (FCS) was used to study the association of labelled glycol-PEGylated PANs. The number of polymer chains forming the nanoparticles was determined from the changes in amplitude of the cross-correlation function of the polymers after formation of the nanoparticles. SAXS and fluorescence cross-correlation spectroscopy were used to investigate the interaction of PANs with lectins: concanavalin A with mannose modified PANs, and jacalin with lactose modified ones. FINDINGS: Glyco-PEGylated PANs are highly monodispersed, with diameters of a few tens of nanometers and low charge, and a structure corresponding to spheres with Gaussian chains. FCS shows that the PANs are single chain nanoparticles or formed by two polymer chains. Concanavalin A and jacalin show specific interactions for the glyco-PEGylated PANs with higher affinity than bovine serum albumin.


Assuntos
Nanopartículas , Fosfatos , Concanavalina A , Lactose , Manose , Espalhamento a Baixo Ângulo , Raios X , Polietilenoglicóis/química , Difração de Raios X , Nanopartículas/química , Poliaminas , Lectinas/química , Polímeros , Análise Espectral
3.
Angew Chem Int Ed Engl ; 62(1): e202210140, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36321387

RESUMO

Ultra-small gold nanoparticles (UAuNPs) are extremely interesting for applications in nanomedicine thanks to their good stability, biocompatibility, long circulation time and efficient clearance pathways. UAuNPs engineered with glycans (Glyco-UAuNPs) emerged as excellent platforms for many applications since the multiple copies of glycans can mimic the multivalent effect of glycoside clusters. Herein, we unravel a straightforward photo-induced synthesis of Glyco-UAuNPs based on a reliable and robust microfluidic approach. The synthesis occurs at room temperature avoiding the use of any further chemical reductant, templating agents or co-solvents. Exploiting 1 H NMR spectroscopy, we showed that the amount of thiol-ligand exposed on the UAuNPs is linearly correlated to the ligand concentration in the initial mixture. The results pave the way towards the development of a programmable synthetic approach, enabling an accurate design of the engineered UAuNPs or smart hybrid nano-systems.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Ouro/química , Nanopartículas Metálicas/química , Microfluídica , Ligantes , Nanopartículas/química , Polissacarídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA