Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202406761, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990707

RESUMO

Multicomponent catalysts can be designed to synergistically combine reaction intermediates at interfacial active sites, but restructuring makes systematic control and understanding of such dynamics challenging. We here unveil how reducibility and mobility of indium oxide species in Ru-based catalysts crucially control the direct, selective conversion of CO2 to ethanol. When uncontrolled, reduced indium oxide species occupy the Ru surface, leading to deactivation. With the addition of steam as a mild oxidant and using porous polymer layers to control In mobility, Ru-In2O3 interface sites are stabilized, and ethanol can be produced with superior overall selectivity (70%, rest CO). Our work highlights how engineering of bifunctional active ensembles enables cooperativity and synergy at tailored interfaces, which unlocks unprecedented performance in heterogeneous catalysts.

2.
Chem Sci ; 15(17): 6454-6464, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38699272

RESUMO

Supported noble metal catalysts, ubiquitous in chemical technology, often undergo dynamic transformations between reduced and oxidized states-which influence the metal nuclearities, oxidation states, and catalytic properties. In this investigation, we report the results of in situ X-ray absorption spectroscopy, scanning transmission electron microscopy, and other physical characterization techniques, bolstered by density functional theory, to elucidate the structural transformations of a set of MgO-supported palladium catalysts under oxidative treatment conditions. As the calcination temperature increased, the as-synthesized supported metallic palladium nanoparticles underwent oxidation to form palladium oxides (at approximately 400 °C), which, at approximately 500 °C, were oxidatively fragmented to form mixtures of atomically dispersed palladium cations. The data indicate two distinct types of atomically dispersed species: palladium cations located at MgO steps and those embedded in the first subsurface layer of MgO. The former exhibit significantly higher (>500 times) catalytic activity for ethylene hydrogenation than the latter. The results pave the way for designing highly active and stable supported palladium hydrogenation catalysts with optimized metal utilization.

3.
J Phys Chem C Nanomater Interfaces ; 128(3): 1165-1176, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38293693

RESUMO

Soft-oxidant-assisted methane coupling has emerged as a promising pathway to upgrade methane from natural gas sources to high-value commodity chemicals, such as ethylene, at selectivities higher than those associated with oxidative (O2) methane coupling (OCM). To date, few studies have reported investigations into the electronic structure and the microscopic physical structure of catalytic active sites present in the binary metal oxide catalyst systems that are known to be effective for this reaction. Correlating the catalyst activity to specific active site structures and electronic properties is an essential aspect of catalyst design. Here, we used X-ray absorption spectroscopy at the Ca K-edge to ascertain the most probable local environment of Ca in the ZnO-supported Ca oxide catalysts. These catalysts are shown here to be active for N2O-assisted methane coupling (N2O-OCM) and have previously been reported to be active for CO2-assisted methane coupling (CO2-OCM). X-ray absorption near edge structure features at multiple Ca loadings are interpreted through simulated spectra derived from ab initio full multiple scattering calculations. These simulations included consideration of CaO structures organized in multiple spatial arrangements-linear, planar, and cubic-with separate analyses of Ca atoms in the surfaces and bulk of the three-dimensional structures. The morphology of the oxide clusters was found to influence the various regions of the X-ray absorption spectrum differently. Experiment and theory show that for low-Ca-loading catalysts (≤1 mol %), which contain sites particularly active for methane coupling, Ca primarily exists in an oxidized state that is consistent with the coordination environment of Ca ions in one- and two-dimensional clusters. In addition to their unique nanoscale structures, the spectra also indicate that these clusters have varying degrees of undercoordinated surface Ca atoms that could further influence their catalytic activities. The local Ca structure was correlated to methane coupling activity from N2O-OCM and previously reported CO2-OCM reactor studies. This study provides a unique perspective on the relationship between the catalyst physical and electronic structure and active sites for soft-oxidant-assisted methane coupling, which can be used to inform future catalyst development.

4.
Angew Chem Int Ed Engl ; 63(1): e202313389, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37906130

RESUMO

Tuning the anionic site of catalyst supports can impact reaction pathways by creating active sites on the support or influencing metal-support interactions when using supported metal nanoparticles. This study focuses on CO2 hydrogenation over supported Cu nanoparticles, revealing a 3-fold increase in methanol yield when replacing oxygen anions with hydrides in the perovskite support (Cu/BaTiO2.8 H0.2 yields ~146 mg/h/gCu vs. Cu/BaTiO3 yields ~50 mg/h/gCu). The contrast suggests that significant roles are played by the support hydrides in the reaction. Temperature programmed reaction and isotopic labelling studies indicate that BaTiO2.8 H0.2 surface hydride species follow a Mars van Krevelen mechanism in CO2 hydrogenation, promoting methanol production. High-pressure steady-state isotopic transient kinetic analysis (SSITKA) studies suggest that Cu/BaTiO2.8 H0.2 possesses both a higher density and more active and selective sites for methanol production compared to Cu/BaTiO3 . An operando high-pressure diffuse reflectance infrared spectroscopy (DRIFTS)-SSITKA study shows that formate species are the major surface intermediates over both catalysts, and the subsequent hydrogenation steps of formate are likely rate-limiting. However, the catalytic reactivity of Cu/BaTiO2.8 H0.2 towards the formate species is much higher than Cu/BaTiO3 , likely due to the altered electronic structure of interface Cu sites by the hydrides in the support as validated by density functional theory (DFT) calculations.

5.
ACS Appl Mater Interfaces ; 15(40): 47025-47036, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37756387

RESUMO

Electrolyte cations can have significant effects on the kinetics and selectivity of electrocatalytic reactions. We show an atypical mechanism through which electrolyte cations can impact electrocatalyst performance─direct incorporation of the cation into the oxide electrocatalyst lattice. We investigate the transformations of copper electrodes in alkaline electrochemistry through operando X-ray absorption spectroscopy in KOH and Ba(OH)2 electrolytes. In KOH electrolytes, both the near-edge structure and extended fine-structure agree with previous studies; however, the X-ray absorption spectra vary greatly in Ba(OH)2 electrolytes. Through a combination of electronic structure modeling, near-edge simulation, and postreaction characterization, we propose that Ba2+ cations are directly incorporated into the lattice and form an ordered BaCuO2 phase at potentials more oxidizing than 200 mV vs the normal hydrogen electrode (NHE). BaCuO2 formation is followed by further oxidation to a bulk Cu3+-like BaxCuyOz phase at 900 mV vs NHE. Additionally, during reduction in Ba(OH)2 electrolyte, we find both Cu-O bonds and Cu-Ba scattering persist at potentials as low as -400 mV vs NHE. To our knowledge, this is the first evidence for direct oxidative incorporation of an electrolyte cation into the bulk lattice to form a mixed oxide electrode. The oxidative incorporation of electrolyte cations to form mixed oxides could open a new route for the in situ formation of active and selective oxidation electrocatalysts.

6.
Inorg Chem ; 62(36): 14523-14532, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37624729

RESUMO

Sustainable production of rare earth elements (REEs) is critical for technologies needed for climate change mitigation, including wind turbines and electric vehicles. However, separation technologies currently used in REE production have large environmental footprints, necessitating more sustainable strategies. Aqueous, affinity-based separations are examples of such strategies. To make these technologies feasible, it is imperative to connect aqueous ligand structure to ligand selectivity for individual REEs. As a step toward this goal, we analyzed the extended X-ray absorption fine structure (EXAFS) of four lanthanides (La, Ce, Pr, and Nd) complexed by a common REE chelator, ethylenediaminetetraacetic acid (EDTA) to determine the aqueous-phase structure. Reference structures from density functional theory (DFT) were used to help fit the EXAFS spectra. We found that all four Ln-EDTA coordination complexes formed 9-coordinate structures with 6 coordinating atoms from EDTA (4 carboxyl oxygen atoms and 2 nitrogen atoms) and 3 oxygen atoms from water molecules. All EXAFS fits were of high quality (R-factor < 0.02) and showed decreasing average first-shell coordination distance across the series (2.62-2.57 Å from La-Nd), in agreement with DFT (2.65-2.56 Å from La-Nd). The insights determined herein will be useful in the development of ligands for sustainable rare earth elements (REE) separation technologies.

7.
J Synchrotron Radiat ; 30(Pt 5): 1023-1029, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37594862

RESUMO

This paper presents software for calculating the optimal mass of samples with complex compositions (e.g. supported metal catalysts) for X-ray absorption spectroscopy (XAS) and scattering measurements. The ability to calculate the sample mass and other relevant parameters needed for an XAS measurement allows experimentalists to be better prepared in terms of detector selection, energy range of scan and overall time needed to complete the measurement, thus increasing efficiency. CatMass builds on existing sample mass calculators allowing users to determine the optimum sample preparation, collection geometry, usable energy range for a scan and approximate edge step of the absorption event. Visualization tools present the absorption calculation results in a format familiar to XAS experimentalists, with the added ability to save calculations and plots for future reference or recalculation. CatMass is a program broadly applicable in catalysis and is helpful for users with complex samples due to composition/stoichiometry or multiple competing elements.

8.
J Phys Chem Lett ; 14(19): 4591-4599, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37166100

RESUMO

Quick-scanning X-ray absorption fine structure (QXAFS) measurements were used to characterize the exchanges of ethylene and CO ligands in a zeolite HY-supported single-site Rh complex at a sampling rate of 1.0 Hz. The two ligands were reversibly exchanged on the rhodium, with quantitative results determined for the C2H4-for-CO exchange that are consistent with a first-order process. The apparent rate constant for the exchange decreased with increasing temperature. Fourier-transform infrared spectra characterizing the C2H4 sorbed in the zeolite showed that the amount decreased with increasing temperature, consistent with the decrease in the exchange rate with increasing temperature. The results, illustrating the dynamics of ligand exchanges on a single-site supported metal catalyst, demonstrate the broad emerging applicability of the QXAFS technique for characterizing the dynamics of reactive intermediates on catalysts.

9.
J Am Chem Soc ; 145(6): 3408-3418, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36724435

RESUMO

A mixed-valence oxotrimer metal-organic framework (MOF), Ni-MIL-127, with a fully coordinated nickel atom and two iron atoms in the inorganic node, generates a missing linker defect upon thermal treatment in helium (>473 K) to engender an open coordination site on nickel which catalyzes propylene oligomerization devoid of any cocatalysts or initiators. This catalyst is stable for ∼20 h on stream at 500 kPa and 473 K, unprecedented for this chemistry. The number of missing linkers on synthesized and activated Ni-MIL-127 MOFs is quantified using temperature-programmed oxidation, 1H nuclear magnetic resonance spectroscopy, and X-ray absorption spectroscopy to be ∼0.7 missing linkers per nickel; thus, a majority of Ni species in the MOF framework catalyze propylene oligomerization. In situ NO titrations under reaction conditions enumerate ∼62% of the nickel atoms as catalytically relevant to validate the defect density upon thermal treatment. Propylene oligomerization rates on Ni-MIL-127 measured at steady state have activation energies of 55-67 kJ mol-1 from 448 to 493 K and are first-order in propylene pressures from 5 to 550 kPa. Density functional theory calculations on cluster models of Ni-MIL-127 are employed to validate the plausibility of the missing linker defect and the Cossee-Arlman mechanism for propylene oligomerization through comparisons between apparent activation energies from steady-state kinetics and computation. This study illustrates how MOF precatalysts engender defective Ni species which exhibit reactivity and stability characteristics that are distinct and can be engineered to improve catalytic activity for olefin oligomerization.

10.
J Phys Chem Lett ; 13(17): 3896-3903, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35471032

RESUMO

Atomically dispersed metals on metal oxide supports are a rapidly growing class of catalysts. Developing an understanding of where and how the metals are bonded to the supports is challenging because support surfaces are heterogeneous, and most reports lack a detailed consideration of these points. Herein, we report two atomically dispersed CO oxidation catalysts having markedly different metal-support interactions: platinum in the first layer of crystalline MgO powder and platinum in the second layer of this support. Structural models have been determined on the basis of data and computations, including those determined by extended X-ray absorption fine structure and X-ray absorption near edge structure spectroscopies, infrared spectroscopy of adsorbed CO, and scanning transmission electron microscopy. The data demonstrate the transformation of surface to subsurface platinum as the temperature of sample calcination increased. Catalyst performance data demonstrate the lower activity but greater stability of the subsurface platinum than of the surface platinum.

11.
J Am Chem Soc ; 142(26): 11474-11485, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32496792

RESUMO

Zeolites are widely applied supports for metal catalysts, but molecular sieves with comparable structures-silicoaluminophosphates (SAPOs)-have drawn much less attention and been overlooked as supports for atomically dispersed metals. Now, we report SAPO-37 as a support for atomically dispersed rhodium in rhodium diethylene complexes, made by the reaction of Rh(η2-C2H4)2(acetylacetonate) with the support and anchored by two Rh-O bonds at framework tetrahedral sites, as shown by infrared and extended X-ray absorption fine structure spectra. The ethylene ligands were readily replaced with CO, giving sharp νCO bands indicating highly uniform supported species. A comparison of the spectra with those of comparable rhodium complexes on zeolite HY shows that the SAPO- and zeolite-supported complexes are isostructural, providing an unmatched opportunity for determining support effects in catalysis. The two catalysts had similar initial room-temperature activities per Rh atom for ethylene conversion in the presence of H2, but the SAPO-supported catalyst was selective for ethylene hydrogenation and the zeolite-supported catalyst selective for ethylene dimerization; correspondingly, the catalyst on the SAPO was more stable than that on the zeolite during operation in a flow reactor.

12.
Chem Sci ; 10(9): 2623-2632, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30996978

RESUMO

Single-site Ir(CO)2 complexes bonded to high-surface-area metal oxide supports, SiO2, TiO2, Fe2O3, CeO2, MgO, and La2O3, were synthesized by chemisorption of Ir(CO)2(acac) (acac = acetylacetonate) followed by coating with each of the following ionic liquids (ILs): 1-n-butyl-3-methylimidazolium tetrafluoroborate, [BMIM][BF4], 1-n-butyl-3-methylimidazolium acetate, [BMIM][Ac], and 1-(3-cyanopropyl)-3-methylimidazolium dicyanamide, [CPMIM][DCA]. Extended X-ray absorption fine structure spectroscopy showed that site-isolated iridium was bonded to oxygen atoms of the support. Electron densities on the iridium enveloped by each IL sheath/support combination were characterized by carbonyl infrared spectroscopy of the iridium gem-dicarbonyls and by X-ray absorption near-edge structure data. The electron-donor/acceptor tendencies of both the support and IL determine the activity and selectivity of the catalysts for the hydrogenation of 1,3-butadiene, with electron-rich iridium being selective for partial hydrogenation. The results resolve the effects of the IL and support as ligands; for example, the effect of the IL becomes dominant when the support has a weak electron-donor character. The combined effects of supports and ILs as ligands offer broad opportunities for tuning catalytic properties of supported metal catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA