Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Parkinsonism Relat Disord ; 124: 106989, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38754220

RESUMO

The ATP10B gene has been proposed to play an important role in the development of early-onset Parkinson's disease (PD). Nevertheless, various studies have presented controversial conclusions regarding the involvement of this gene in PD. Here, we screened 1162 patients with PD, employing a targeted resequencing approach to investigate the putative relevance of this gene in a large independent cohort of these patients from southern Spain. Variations were classified according to the American College of Medical Genetics and Genomics criteria. Association studies were performed using data of a representative healthy Spanish population from the Medical Genome Project. Frequent variants were excluded. A total of 68 variants (rare or very rare) were detected in our cohort. Among ATP10B variant carriers, 12.9 % were putative compound heterozygous carriers; of these, 25 % were patients with early-onset PD. No evidence of a relation between any rare variants of ATP10B and PD risk was observed. Therefore, our results do not support a role for ATP10B in the onset of PD, or in the risk of developing it.

2.
Neuron ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38701790

RESUMO

Multiple system atrophy (MSA) is an adult-onset, sporadic synucleinopathy characterized by parkinsonism, cerebellar ataxia, and dysautonomia. The genetic architecture of MSA is poorly understood, and treatments are limited to supportive measures. Here, we performed a comprehensive analysis of whole genome sequence data from 888 European-ancestry MSA cases and 7,128 controls to systematically investigate the genetic underpinnings of this understudied neurodegenerative disease. We identified four significantly associated risk loci using a genome-wide association study approach. Transcriptome-wide association analyses prioritized USP38-DT, KCTD7, and lnc-KCTD7-2 as novel susceptibility genes for MSA within these loci, and single-nucleus RNA sequence analysis found that the associated variants acted as cis-expression quantitative trait loci for multiple genes across neuronal and glial cell types. In conclusion, this study highlights the role of genetic determinants in the pathogenesis of MSA, and the publicly available data from this study represent a valuable resource for investigating synucleinopathies.

3.
Lancet Neurol ; 23(6): 603-614, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614108

RESUMO

BACKGROUND: Parkinson's disease is a progressive neurodegenerative disorder with multifactorial causes, among which genetic risk factors play a part. The RAB GTPases are regulators and substrates of LRRK2, and variants in the LRRK2 gene are important risk factors for Parkinson's disease. We aimed to explore genetic variability in RAB GTPases within cases of familial Parkinson's disease. METHODS: We did whole-exome sequencing in probands from families in Canada and Tunisia with Parkinson's disease without a genetic cause, who were recruited from the Centre for Applied Neurogenetics (Vancouver, BC, Canada), an international consortium that includes people with Parkinson's disease from 36 sites in 24 countries. 61 RAB GTPases were genetically screened, and candidate variants were genotyped in relatives of the probands to assess disease segregation by linkage analysis. Genotyping was also done to assess variant frequencies in individuals with idiopathic Parkinson's disease and controls, matched for age and sex, who were also from the Centre for Applied Neurogenetics but unrelated to the probands or each other. All participants were aged 18 years or older. The sequencing and genotyping findings were validated by case-control association analyses using bioinformatic data obtained from publicly available clinicogenomic databases (AMP-PD, GP2, and 100 000 Genomes Project) and a private German clinical diagnostic database (University of Tübingen). Clinical and pathological findings were summarised and haplotypes were determined. In-vitro studies were done to investigate protein interactions and enzyme activities. FINDINGS: Between June 1, 2010, and May 31, 2017, 130 probands from Canada and Tunisia (47 [36%] female and 83 [64%] male; mean age 72·7 years [SD 11·7; range 38-96]; 109 White European ancestry, 18 north African, two east Asian, and one Hispanic] underwent whole-exome sequencing. 15 variants in RAB GTPase genes were identified, of which the RAB32 variant c.213C>G (Ser71Arg) cosegregated with autosomal dominant Parkinson's disease in three families (nine affected individuals; non-parametric linkage Z score=1·95; p=0·03). 2604 unrelated individuals with Parkinson's disease and 344 matched controls were additionally genotyped, and five more people originating from five countries (Canada, Italy, Poland, Turkey, and Tunisia) were identified with the RAB32 variant. From the database searches, in which 6043 individuals with Parkinson's disease and 62 549 controls were included, another eight individuals were identified with the RAB32 variant from four countries (Canada, Germany, UK, and USA). Overall, the association of RAB32 c.213C>G (Ser71Arg) with Parkinson's disease was significant (odds ratio [OR] 13·17, 95% CI 2·15-87·23; p=0·0055; I2=99·96%). In the people who had the variant, Parkinson's disease presented at age 54·6 years (SD 12·75, range 31-81, n=16), and two-thirds had a family history of parkinsonism. RAB32 Ser71Arg heterozygotes shared a common haplotype, although penetrance was incomplete. Findings in one individual at autopsy showed sparse neurofibrillary tangle pathology in the midbrain and thalamus, without Lewy body pathology. In functional studies, RAB32 Arg71 activated LRRK2 kinase to a level greater than RAB32 Ser71. INTERPRETATION: RAB32 Ser71Arg is a novel genetic risk factor for Parkinson's disease, with reduced penetrance. The variant was found in individuals with Parkinson's disease from multiple ethnic groups, with the same haplotype. In-vitro assays show that RAB32 Arg71 activates LRRK2 kinase, which indicates that genetically distinct causes of familial parkinsonism share the same mechanism. The discovery of RAB32 Ser71Arg also suggests several genetically inherited causes of Parkinson's disease originated to control intracellular immunity. This shared aetiology should be considered in future translational research, while the global epidemiology of RAB32 Ser71Arg needs to be assessed to inform genetic counselling. FUNDING: National Institutes of Health, the Canada Excellence Research Chairs program, Aligning Science Across Parkinson's, the Michael J Fox Foundation for Parkinson's Research, and the UK Medical Research Council.


Assuntos
Doença de Parkinson , Proteínas rab de Ligação ao GTP , Humanos , Feminino , Masculino , Doença de Parkinson/genética , Proteínas rab de Ligação ao GTP/genética , Pessoa de Meia-Idade , Idoso , Ligação Genética/genética , Adulto , Canadá/epidemiologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Tunísia , Predisposição Genética para Doença/genética , Sequenciamento do Exoma , Estudos de Casos e Controles , Genótipo
4.
NPJ Parkinsons Dis ; 10(1): 66, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503768

RESUMO

Recruitment is a major rate-limiting factor in Parkinson's disease (PD) research. AccessPD is a unique platform that aims to create a registry of more than 2000 PD patients and a rich database of PD-relevant information. Potential participants are identified using electronic health records (EHRs) in primary care. They are contacted via text message with an individualized link to the study portal. Electronic patient-reported outcomes (ePRO) are collected via online questionnaires and integrated with existing EHR. 200 participants were recruited within the first 6 months, of which 191 answered the follow-up questionnaire. Here, to showcase the potential of AccessPD, we described the most common diagnoses before and after PD diagnosis, the most commonly prescribed drugs, and identified participants who could benefit from device-aided therapies using consensus criteria. AccessPD shows its unique ability to link different data sources for patient stratification in longitudinal studies and recruitment into clinical trials.

5.
medRxiv ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38076954

RESUMO

Objective: This study aims to address disparities in risk prediction by evaluating the performance of polygenic risk score (PRS) models using the 90 risk variants across 78 independent loci previously linked to Parkinson's disease (PD) risk across seven diverse ancestry populations. Methods: We conducted a multi-stage study, testing PRS models in predicting PD status across seven different ancestries applying three approaches: 1) PRS adjusted by gender and age; 2) PRS adjusted by gender, age and principal components (PCs); and 3) PRS adjusted by gender, age and percentage of population admixture. These models were built using the largest four population-specific summary statistics of PD risk to date (base data) and individual level data obtained from the Global Parkinson's Genetics Program (target data). We performed power calculations to estimate the minimum sample size required to conduct these analyses. A total of 91 PRS models were developed to investigate cumulative known genetic variation associated with PD risk and age of onset in a global context. Results: We observed marked heterogeneity in risk estimates across non-European ancestries, including East Asians, Central Asians, Latino/Admixed Americans, Africans, African admixed, and Ashkenazi Jewish populations. Risk allele patterns for the 90 risk variants yielded significant differences in directionality, frequency, and magnitude of effect. PRS did not improve in performance when predicting disease status using similar base and target data across multiple ancestries, demonstrating that cumulative PRS models based on current known risk are inherently biased towards European populations. We found that PRS models adjusted by percentage of admixture outperformed models that adjusted for conventional PCs in highly admixed populations. Overall, the clinical utility of our models in individually predicting PD status is limited in concordance with the estimates observed in European populations. Interpretation: This study represents the first comprehensive assessment of how PRS models predict PD risk and age at onset in a multi-ancestry fashion. Given the heterogeneity and distinct genetic architecture of PD across different populations, our assessment emphasizes the need for larger and diverse study cohorts of individual-level target data and well-powered ancestry-specific summary statistics. Our current understanding of PD status unraveled through GWAS in European populations is not generally applicable to other ancestries. Future studies should integrate clinical and *omics level data to enhance the accuracy and predictive power of PRS across diverse populations.

8.
Neurol Genet ; 9(4): e200079, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37293291

RESUMO

Background and Objectives: Most patients with amyotrophic lateral sclerosis (ALS) lack a monogenic mutation. This study evaluates ALS cumulative genetic risk in an independent Michigan and Spanish replication cohort using polygenic scores. Methods: Participant samples from University of Michigan were genotyped and assayed for the chromosome 9 open reading frame 72 hexanucleotide expansion. Final cohort size was 219 ALS and 223 healthy controls after genotyping and participant filtering. Polygenic scores excluding the C9 region were generated using an independent ALS genome-wide association study (20,806 cases, 59,804 controls). Adjusted logistic regression and receiver operating characteristic curves evaluated the association and classification between polygenic scores and ALS status, respectively. Population attributable fractions and pathway analyses were conducted. An independent Spanish study sample (548 cases, 2,756 controls) was used for replication. Results: Polygenic scores constructed from 275 single-nucleotide variation (SNV) had the best model fit in the Michigan cohort. An SD increase in ALS polygenic score associated with 1.28 (95% CI 1.04-1.57) times higher odds of ALS with area under the curve of 0.663 vs a model without the ALS polygenic score (p value = 1 × 10-6). The population attributable fraction of the highest 20th percentile of ALS polygenic scores, relative to the lowest 80th percentile, was 4.1% of ALS cases. Genes annotated to this polygenic score enriched for important ALS pathomechanisms. Meta-analysis with the Spanish study, using a harmonized 132 single nucleotide variation polygenic score, yielded similar logistic regression findings (odds ratio: 1.13, 95% CI 1.04-1.23). Discussion: ALS polygenic scores can account for cumulative genetic risk in populations and reflect disease-relevant pathways. If further validated, this polygenic score will inform future ALS risk models.

10.
NPJ Parkinsons Dis ; 9(1): 33, 2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871034

RESUMO

Open science and collaboration are necessary to facilitate the advancement of Parkinson's disease (PD) research. Hackathons are collaborative events that bring together people with different skill sets and backgrounds to generate resources and creative solutions to problems. These events can be used as training and networking opportunities, thus we coordinated a virtual 3-day hackathon event, during which 49 early-career scientists from 12 countries built tools and pipelines with a focus on PD. Resources were created with the goal of helping scientists accelerate their own research by having access to the necessary code and tools. Each team was allocated one of nine different projects, each with a different goal. These included developing post-genome-wide association studies (GWAS) analysis pipelines, downstream analysis of genetic variation pipelines, and various visualization tools. Hackathons are a valuable approach to inspire creative thinking, supplement training in data science, and foster collaborative scientific relationships, which are foundational practices for early-career researchers. The resources generated can be used to accelerate research on the genetics of PD.

12.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674414

RESUMO

Mosaic loss of chromosome Y (mLOY) is a common ageing-related somatic event and has been previously associated with Alzheimer's disease (AD). However, mLOY estimation from genotype microarray data only reflects the mLOY degree of subjects at the moment of DNA sampling. Therefore, mLOY phenotype associations with AD can be severely age-confounded in the context of genome-wide association studies. Here, we applied Mendelian randomisation to construct an age-independent mLOY polygenic risk score (mloy-PRS) using 114 autosomal variants. The mloy-PRS instrument was associated with an 80% increase in mLOY risk per standard deviation unit (p = 4.22 × 10-20) and was orthogonal with age. We found that a higher genetic risk for mLOY was associated with faster progression to AD in men with mild cognitive impairment (hazard ratio (HR) = 1.23, p = 0.01). Importantly, mloy-PRS had no effect on AD conversion or risk in the female group, suggesting that these associations are caused by the inherent loss of the Y chromosome. Additionally, the blood mLOY phenotype in men was associated with increased cerebrospinal fluid levels of total tau and phosphorylated tau181 in subjects with mild cognitive impairment and dementia. Our results strongly suggest that mLOY is involved in AD pathogenesis.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Masculino , Feminino , Doença de Alzheimer/genética , Cromossomos Humanos Y/genética , Estudo de Associação Genômica Ampla , Mosaicismo , Fatores de Risco , Disfunção Cognitiva/genética , Proteínas tau/genética , Biomarcadores , Peptídeos beta-Amiloides/genética
13.
NPJ Parkinsons Dis ; 9(1): 12, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720879

RESUMO

Peripheral inflammatory immune responses are thought to play a major role in the pathogenesis of Parkinson's disease (PD). The neutrophil-to-lymphocyte ratio (NLR), a biomarker of systemic inflammation, has been reported to be higher in patients with PD than in healthy controls (HCs). The present study was aimed at determining if the peripheral inflammatory immune response could be influenced by the genetic background of patients with PD. We included a discovery cohort with 222 patients with PD (132 sporadic PD, 44 LRRK2-associated PD (with p.G2019S and p.R1441G variants), and 46 GBA-associated PD), as well as 299 HCs. Demographic and clinical data were recorded. Leukocytes and their subpopulations, and the NLR were measured in peripheral blood. Multivariate lineal regression and post-hoc tests were applied to determine the differences among the groups. Subsequently, a replication study using the Parkinson's Progression Markers Initiative cohort was performed which included 401 patients with PD (281 sPD patients, 66 LRRK2-PD patients, 54 GBA-PD patients) and a group of 174 HCs. Patients with sporadic PD and GBA-associated PD showed a significantly lower lymphocyte count, a non-significantly higher neutrophil count and a significantly higher NLR than HCs. The peripheral inflammatory immune response of patients with LRRK2-associated PD did not differ from HCs. Our study supports the involvement of a peripheral inflammatory immune response in the pathophysiology of sPD and GBA-associated PD. However, this inflammatory response was not found in LRRK2-associated PD, probably reflecting different pathogenic inflammatory mechanisms.

14.
J Neurol ; 270(1): 477-485, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36169739

RESUMO

BACKGROUND: Hyperhomocysteinemia is considered an independent risk factor for cognitive impairment. OBJECTIVE: To study the correlation between homocysteine levels and cognitive impairment in patients with PD. METHODS: We conducted a case-control study that included 246 patients with PD, of whom 32 were cognitively impaired. The levels of homocysteine, folate, and vitamin B12 were measured in peripheral blood. Multivariate logistic regression analysis was applied to determine differences in homocysteine levels between PD patients with and without cognitive impairment. A meta-analysis was performed to clarify the role of Hcy levels in PD with cognitive decline. Five polymorphisms in genes involved in Hcy metabolism, including MTHFR rs1801133 and rs1801131, COMT rs4680, MTRR rs1801394, and TCN2 rs1801198, were genotyped. RESULTS: Our case-control study showed that homocysteine levels were associated with cognitive impairment in PD after adjusting for possible confounding factors such as levodopa equivalent daily dose. The results of our meta-analysis further supported the positive association between homocysteine levels and cognition in PD. We found that the MTHFR rs1801133 TT genotype led to higher homocysteine levels in PD patients, whereas the MTHFR rs1801131 CC genotype resulted in higher folate levels. However, the polymorphisms studied were not associated with cognitive impairment in PD. CONCLUSIONS: Increased homocysteine levels were a risk factor for cognitive decline in PD. However, no association was found between polymorphisms in genes involved in homocysteine metabolism and cognitive impairment in PD. Large-scale studies of ethnically diverse populations are required to definitively assess the relationship between MTHFR and cognitive impairment in PD.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/epidemiologia , Doença de Parkinson/genética , Estudos de Casos e Controles , Vitamina B 12 , Ácido Fólico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/genética , Genótipo , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Patrimônio Genético , Homocisteína
16.
NPJ Parkinsons Dis ; 8(1): 157, 2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371440

RESUMO

Transcriptomics in Parkinson's disease (PD) offers new insights into the molecular mechanism of PD pathogenesis. Several pathways, such as inflammation and protein degradation, have been identified by differential gene expression analysis. Our aim was to identify gene expression differences underlying the disease etiology and the discovery of pre-symptomatic risk biomarkers for PD from a multicenter study in the context of the PROPAG-AGEING project. We performed RNA sequencing from 47 patients with de novo PD, 10 centenarians, and 65 healthy controls. Using identified differentially expressed genes, functional annotations were assigned using gene ontology to unveil significant enriched biological processes. The expression of 16 selected genes was validated using OpenArray® assays and samples from independent cohorts of 201 patients with advanced PD, 340 healthy siblings of PD patients, and 177 healthy controls. Differential gene expression analysis identified higher FCGBP expression in patients with de novo PD compared with healthy controls and compared with centenarians. Furthermore, FCGBP showed no differences in terms of population origin or aging process. The increased FCGBP expression was validated in patients with advanced PD and their siblings. Thus, we provided evidence for an upregulation of FCGBP mRNA levels not only in patients with PD but also in individuals at putative higher risk of PD, suggesting that it could be important in gut-brain PD interaction, mediating the connection between microbiota and intestinal inflammatory processes, as well as neuroinflammation and neurodegeneration.

17.
Ann Neurol ; 92(5): 715-724, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35913124

RESUMO

Parkinson's disease (PD) is a complex neurodegenerative condition in which genetic and environmental factors interact to contribute to its etiology. Remarkable progress has been made in deciphering disease etiology through genetic approaches, but there is limited data about how environmental and genetic factors interact to modify penetrance, risk, and disease severity. Here, we provide insights into environmental modifiers of PD, discussing precedents from other neurological and non-neurological conditions. Based on these examples, we outline genetic and environmental factors contributing to PD and review potential environmental modifiers of penetrance and clinical variability in monogenic and idiopathic PD. We also highlight the potential challenges and propose how future studies might tackle these important questions. ANN NEUROL 2022;92:715-724.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/epidemiologia , Doença de Parkinson/genética , Penetrância
18.
Mov Disord ; 37(9): 1841-1849, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35852957

RESUMO

BACKGROUND: Previous studies suggest a link between CAG repeat number in the HTT gene and non-Huntington neurodegenerative diseases. OBJECTIVE: The aim is to analyze whether expanded HTT CAG alleles and/or their size are associated with the risk for developing α-synucleinopathies or their behavior as modulators of the phenotype. METHODS: We genotyped the HTT gene CAG repeat number and APOE-Ɛ isoforms in a case-control series including patients with either clinical or neuropathological diagnosis of α-synucleinopathy. RESULTS: We identified three Parkinson's disease (PD) patients (0.30%) and two healthy controls (0.19%) carrying low-penetrance HTT repeat expansions whereas none of the dementia with Lewy bodies (DLB) or multisystem atrophy (MSA) patients carried pathogenic HTT expansions. In addition, a clear increase in the number of HTT CAG repeats was found among DLB and PD groups influenced by the male gender and also by the APOE4 allele among DLB patients. HTT intermediate alleles' (IAs) distribution frequency increased in the MSA group compared with controls (8.8% vs. 3.9%, respectively). These differences were indeed statistically significant in the MSA group with neuropathological confirmation. Two MSA HTT CAG IAs carriers with 32 HTT CAG repeats showed isolated polyQ inclusions in pons and basal nuclei, which are two critical structures in the neurodegeneration of MSA. CONCLUSIONS: Our results point to a link between HTT CAG number, HTT IAs, and expanded HTT CAG repeats with other non-HD brain pathology and support the hypothesis that they can share common neurodegenerative pathways. © 2022 International Parkinson and Movement Disorder Society.


Assuntos
Proteína Huntingtina , Doença de Huntington , Atrofia de Múltiplos Sistemas , Doença de Parkinson , Sinucleinopatias , Alelos , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Masculino , Atrofia de Múltiplos Sistemas/genética , Doença de Parkinson/genética , Expansão das Repetições de Trinucleotídeos/genética
20.
Sci Rep ; 12(1): 1330, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35079043

RESUMO

Advanced age represents one of the major risk factors for Parkinson's Disease. Recent biomedical studies posit a role for microRNAs, also known to be remodelled during ageing. However, the relationship between microRNA remodelling and ageing in Parkinson's Disease, has not been fully elucidated. Therefore, the aim of the present study is to unravel the relevance of microRNAs as biomarkers of Parkinson's Disease within the ageing framework. We employed Next Generation Sequencing to profile serum microRNAs from samples informative for Parkinson's Disease (recently diagnosed, drug-naïve) and healthy ageing (centenarians) plus healthy controls, age-matched with Parkinson's Disease patients. Potential microRNA candidates markers, emerging from the combination of differential expression and network analyses, were further validated in an independent cohort including both drug-naïve and advanced Parkinson's Disease patients, and healthy siblings of Parkinson's Disease patients at higher genetic risk for developing the disease. While we did not find evidences of microRNAs co-regulated in Parkinson's Disease and ageing, we report that hsa-miR-144-3p is consistently down-regulated in early Parkinson's Disease patients. Moreover, interestingly, functional analysis revealed that hsa-miR-144-3p is involved in the regulation of coagulation, a process known to be altered in Parkinson's Disease. Our results consistently show the down-regulation of hsa-mir144-3p in early Parkinson's Disease, robustly confirmed across a variety of analytical and experimental analyses. These promising results ask for further research to unveil the functional details of the involvement of hsa-mir144-3p in Parkinson's Disease.


Assuntos
Envelhecimento/metabolismo , MicroRNAs/sangue , Doença de Parkinson/metabolismo , Idoso , Biomarcadores/sangue , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA