Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurophysiol ; 122(6): 2220-2242, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31553687

RESUMO

Tracking head position and orientation in small mammals is crucial for many applications in the field of behavioral neurophysiology, from the study of spatial navigation to the investigation of active sensing and perceptual representations. Many approaches to head tracking exist, but most of them only estimate the 2D coordinates of the head over the plane where the animal navigates. Full reconstruction of the pose of the head in 3D is much more more challenging and has been achieved only in handful of studies, which employed headsets made of multiple LEDs or inertial units. However, these assemblies are rather bulky and need to be powered to operate, which prevents their application in wireless experiments and in the small enclosures often used in perceptual studies. Here we propose an alternative approach, based on passively imaging a lightweight, compact, 3D structure, painted with a pattern of black dots over a white background. By applying a cascade of feature extraction algorithms that progressively refine the detection of the dots and reconstruct their geometry, we developed a tracking method that is highly precise and accurate, as assessed through a battery of validation measurements. We show that this method can be used to study how a rat samples sensory stimuli during a perceptual discrimination task and how a hippocampal place cell represents head position over extremely small spatial scales. Given its minimal encumbrance and wireless nature, our method could be ideal for high-throughput applications, where tens of animals need to be simultaneously and continuously tracked.NEW & NOTEWORTHY Head tracking is crucial in many behavioral neurophysiology studies. Yet reconstruction of the head's pose in 3D is challenging and typically requires implanting bulky, electrically powered headsets that prevent wireless experiments and are hard to employ in operant boxes. Here we propose an alternative approach, based on passively imaging a compact, 3D dot pattern that, once implanted over the head of a rodent, allows estimating the pose of its head with high precision and accuracy.


Assuntos
Comportamento Animal/fisiologia , Movimentos da Cabeça/fisiologia , Imageamento Tridimensional/métodos , Atividade Motora/fisiologia , Neurofisiologia/métodos , Células de Lugar/fisiologia , Animais , Imageamento Tridimensional/instrumentação , Neurofisiologia/instrumentação , Ratos
2.
Biophys J ; 114(6): 1264-1266, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29590583

RESUMO

The folding dynamics of proteins at the single-molecule level has been studied with single-molecule force spectroscopy experiments for 20 years, but a common standardized method for the analysis of the collected data and for sharing among the scientific community members is still not available. We have developed a new open-source tool-Fodis-for the analysis of the force-distance curves obtained in single-molecule force spectroscopy experiments, providing almost automatic processing, analysis, and classification of the obtained data. Our method provides also a classification of the possible unfolding pathways and the structural heterogeneity present during the unfolding of proteins.


Assuntos
Microscopia de Força Atômica , Desdobramento de Proteína , Software , Fenômenos Biomecânicos
3.
Front Cell Neurosci ; 11: 402, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29326552

RESUMO

During neurite development, Actin Waves (AWs) emerge at the neurite base and move up to its tip, causing a transient retraction of the Growth Cone (GC). Many studies have shown that AWs are linked to outbursts of neurite growth and, therefore, contribute to the fast elongation of the nascent axon. Using long term live cell-imaging, we show that AWs do not boost neurite outgrowth and that neurites without AWs can elongate for several hundred microns. Inhibition of Myosin II abolishes the transient GC retraction and strongly modifies the AWs morphology. Super-resolution nanoscopy shows that Myosin IIB shapes the growth cone-like AWs structure and is differently distributed in AWs and GCs. Interestingly, depletion of membrane cholesterol and inhibition of Rho GTPases decrease AWs frequency and velocity. Our results indicate that Myosin IIB, membrane tension, and small Rho GTPases are important players in the regulation of the AW dynamics. Finally, we suggest a role for AWs in maintaining the GCs active during environmental exploration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA