RESUMO
Porous anodic aluminum oxide (PAAO), sometimes referred to as nanoporous anodic alumina, serves as a cost-effective template for nanofabrication in many fields of science and engineering. However, production of ultrathin PAAO membranes with precise thickness in the optical sub-wavelength range remains challenging because of difficulties regarding process control at the initial stage of anodic oxidation. In this study, we demonstrate a technique for consistently manufacturing PAAO with the targeted thickness. An electrochemical cell with an optical window was designed for reflectance spectroscopy of PAAO during anodization. Real-time fitting of spectra to a transfer-matrix model enabled continuous monitoring of the thickness growth of the PAAO layer. Automation software was designed to terminate the anodization process at preset PAAO thickness values. While the concept was illustrated using the widely used method of anodization in a 0.3 M oxalic acid electrolyte with a 40 V potential, it can be readily customized for other protocols. PAAO layers with effective thickness below 300 nm could be produced with a few nanometers accuracy using single-crystal aluminum substrates. The results were confirmed using spectroscopic ellipsometry. The method for controlling the thickness during anodization eliminates the necessity of sample sectioning for electron microscopy and is particularly valuable for the small-scale production of PAAO-based functional optical coatings.
RESUMO
A new composite metal-insulator-metal (MIM) system consisting of exceptionally dense non-close-packed (NCP) arrays of gold or silver nanoparticles, porous anodic aluminum oxide (PAAO), and bulk aluminum substrate interacts strongly with visible light and may become a very useful component for optical applications. The proposed MIM structure can be synthesized using accessible lithography-free chemical and physical processes (anodization and capillary force assisted colloidal particle deposition) that are suitable for the low-cost production of specialized devices. Here, we present a systematic study to determine the essential MIM structure parameters (nanoparticle size and PAAO layer thickness) for localized surface plasmon resonance (LSPR) refractometric sensing. A performance comparison was done by recording the spectra of scattered light upon angled illumination in media with different refractive indices. A clear advantage for maximizing the signal to background ratio was observed in the case of 60 and 80 nm Au nanoparticles with a PAAO thickness in a narrow range between 300 and 375 nm. Sensitivity exceeding a 200 nm peak wavelength shift per refractive index unit was found for 60 nm Au nanoparticles on approximately 500-nm-thick PAAO. The experimental observations were supported by finite-difference time-domain (FDTD) simulations.